plot-results.py 24.5 KB
Newer Older
1
2
3
#!/usr/bin/env python
# coding: utf-8

4
# In[1]:
5
6


7
8
9
10
11
12
13
ZERO = 10e-5
TIMEOUT = 10 * 60 # 10 minutes = 600 seconds


# In[2]:


14
15
import os
import pandas as pd
Jaime Arias's avatar
Jaime Arias committed
16
import numpy as np
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import plotly.io as pio
import plotly.express as px
import plotly.graph_objs as go
from itertools import combinations 
from plotly.subplots import make_subplots

# render figures in notebook
pio.renderers.default = "notebook_connected"

# templates figures
px.defaults.template = "simple_white"
pio.templates.default = "simple_white"

# layout for all figures
LAYOUT_FIGURES = dict(
    autosize=False,
    width = 500,
    height = 500,
    xaxis = dict(
      constrain="domain",
      mirror=True,
      showexponent="all",
      exponentformat="power"
    ),
    yaxis = dict(
      scaleanchor = "x",
      scaleratio = 1,
      mirror=True,
      showexponent="all",
      exponentformat="power"
    ),
    title = dict(
      y = 0.9,
      x = 0.5,
      xanchor = 'center',
      yanchor = 'top'
    )
)


# # Auxiliary Functions

59
# In[3]:
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78


def create_folder(path):
    """Creates a folder if it does not exist
    
    Parameters
    ----------
    path : str
        Path of the new folder
    
    Examples
    --------
    
    >>> create_folder('./results')
    """
    if not os.path.exists(path):
        os.makedirs(path)


79
# In[4]:
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117


def create_figure(df, model):
    """Creates a scatter figure showing the time taken by each tool to verify each property of a model
    
    Parameters
    ----------
    df : pandas.Dataframe
        Dataframe containing the results of the experiments
    model : string
        model to be plotted
    
    Returns
    -------
    plotly.graph_objects.Figure
        Scatter figure
    
    Examples
    --------
    
    >>> import os
    >>> import pandas as pd
    >>> csv_file = os.path.join("results", "output.csv")
    >>> df = pd.read_csv(csv_file)
    >>> fig = create_figure(df, 'philo10')
    """
    model_df = df[df.model == model]

    figure = px.scatter(model_df, 
                        x="formula", y="time",
                        title=model, 
                        color="tool", 
                        symbol_sequence=['x'])

    figure.update_layout(yaxis_title="time (s)", title=LAYOUT_FIGURES['title'])
    return figure


118
# In[5]:
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148


def get_axis_title(experiment, show_strategy=True):
    """Get the axis title of a figure depending on the experiment being plotted
    
    Parameters
    ----------
    experiment : str
        String with the experiment information
    show_strategy : bool, optional
        Flag to show the information related to the strategy used by the tool
    
    Returns
    -------
    str
        axis title
        
    Examples
    --------
    
    >>> get_axis_title('pmc-sog_otfL_couv99-default_1_1', True)
    pmc-sog (Lace, strategy: couv99-default, # cores: 1)
    """
    information = experiment.split('_')
    tool_name = information[0]
    
    info = []
    library_dic = {
        'otfL': 'Lace',
        'otfP': 'Pthreads',
149
150
        'otfC': 'Cthreads',
        'otf': 'Hybrid'
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    }
    
    if (len(information) == 5):
        info.append(library_dic[information[1]])

    if (show_strategy):
        info.append('strategy: {}'.format(information[-3]))

    nb_nodes = int(information[-2])
    if (nb_nodes > 1):
        info.append('# nodes: {}'.format(nb_nodes))

    info.append('# cores: {}'.format(information[-1]))

    title = '{} ({})'.format(tool_name, ', '.join(info))
    
    return title


170
# In[6]:
171
172


173
def create_log_figure(table, table_errors, model, tool_x, tool_y, show_strategy=True, callback=None):
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    """Creates a Scatter figure in logarithmic scale comparing the performance of two tools
    
    Parameters
    ----------
    table : pandas.Dataframe
        Dataframe with the times of each experiment
    table_errors : pandas.Dataframe
        Dataframe with the errors of each experiment
    model : string
        Model to be analyzed
    tool_x : string
        Tool to be compared and plotted on the x-axis
    tool_y : string
        Tool to be compared and plotted on the y-axis
    show_strategy : bool
        Flag to show the stretagy used by the tools
190
191
    callback : function
        Function to be called when clicking on a point
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        
    Returns
    -------
    plotly.graph_objects.Figure
        Scatter figure
        
    Examples
    --------
    >>> import os
    >>> import pandas as pd
    >>> csv_file = os.path.join("results", "output.csv")
    >>> df = pd.read_csv(csv_file)
    >>> table = df.set_index(['model', 'formula', 'tool'], drop=True).unstack('tool')
    >>> fig = create_log_figure(table['time'], table['error'], 'philo10', 'pmc-sog_otfL_couv99-default_1_8', 'pmc-sog_otfP_couv99-default_1_8')
    """
    try:
208
209
210
        min_value = ZERO
        max_value = TIMEOUT
        
211
212
        min_value_log = np.log10(min_value)
        max_value_log = np.log10(max_value)
213

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
        table_model = table.loc[model]
        table_errors_model = table_error.loc[model]
        
        full_table_x = pd.concat([table_model[tool_x],table_model['property'], table_errors_model[tool_x]], axis=1)
        full_table_x.columns = ['time', 'property', 'error']

        full_table_y = pd.concat([table_model[tool_y],table_model['property'], table_errors_model[tool_y]], axis=1)
        full_table_y.columns = ['time', 'property', 'error']

        traces = [
            {"property": 'T', "color":"green"},
            {"property": 'F', "color":"red"},
            {"property": 'U', "color":"black"}
        ]

        figures = []
        for t in traces:
            # filter by verification output
            table_x = full_table_x[full_table_x.property == t['property']]
            table_y = full_table_y[full_table_y.property == t['property']]

            # custom data
            custom_data = list(zip(table_x.index, table_x.error,table_y.error))
            
            # tools
            metainfo = {
                'model': model, 
                'tools': {'x': tool_x, 'y': tool_y},
                'folder': os.path.join(os.path.abspath(os.pardir), "results")
            }

            figures.append(go.Scatter(x=table_x.time,
                                      y=table_y.time,
                                      name=t['property'],
                                      mode='markers',
                                      marker_symbol='circle-open',
                                      marker_color=t['color'],
                                      meta = metainfo,
                                      customdata=custom_data,
                                      hovertemplate =
                                        '<b>Formula # %{customdata[0]}</b><br>' +
                                        '<br><b>Times:</b><br>' +
                                        '<b>x:</b> %{x} s' +
                                        '<br><b>y:</b> %{y} s<br>' +
                                        '<br><b>Errors:</b><br>' +
                                        '<b>x:</b> %{customdata[1]}<br>' +
                                        '<b>y:</b> %{customdata[2]}',
                                        ))    

        # Line
        figures.append(go.Scatter(x=[min_value, max_value], 
                                    y=[min_value, max_value],
                                    mode='lines', showlegend=False,
                                    line=dict(color='black', width=1)))

        # Create figure
        figure = go.FigureWidget(figures)
        figure.update_layout(LAYOUT_FIGURES,
                             title_text=model,
                             hoverlabel=dict(bgcolor="white", align='auto'),
                             legend_title_text='property',
                             xaxis=dict(type='log', autorange=False, range=[min_value_log, max_value_log]),
                             yaxis=dict(type='log', autorange=False, range=[min_value_log, max_value_log]),
                             xaxis_title=get_axis_title(tool_x, show_strategy),
                             yaxis_title=get_axis_title(tool_y, show_strategy))

        # Add event
        if callback is not None:
            for i in range(len(figure.data)):
                figure.data[i].on_click(callback)
284
285
286
287
288
289
290
    
        return figure
    except Exception as e:
        print("Error when ploting model: {} - tool_x: {} - tool_y: {}".format(model, tool_x, tool_y))
        print(e)


291
# In[7]:
Jaime Arias's avatar
Jaime Arias committed
292
293


294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import webbrowser

def get_filename(base_path, tool, model, model_instance, formula):
    """Returns the absolute path of the experiment log
    
    Parameters
    ----------
    base_path : string
        Path of the folder where logs are saved
    tool : string
        Tool name
    model : string
        Model name
    model_instance : string
        Name of the model instance
    formula : string
        Identifier of the formula
    
    Returns
    -------
    string
        Absolute path of the log file
    
    """
    information = tool.split('_')
    
    tool_name = information[0]
    tool_configuration = '_'.join(information[:-2])
    nb_nodes = information[-2]
    nb_cores = information[-1]
    
    experiment_folder = os.path.join(base_path, tool_name, tool_configuration, model, model_instance)
    filename = f'{tool_name}_{model_instance}-n{nb_nodes}-th{nb_cores}-f{formula}'
    absolute_path = os.path.join(experiment_folder, filename)
    
    return absolute_path

def open_logs_callback(trace, points, selector):
    """Callback that open the log files when clicking on a point of the figure
    
    Parameters
    ----------
    trace : plotly.graph_objects.Figure
        the figure to attach the callback
    points : plotly.callbacks.Points 
        points of the figure selected
    selector: plotly.callbacks.InputDeviceState 
        Device information 
    """
    inds = points.point_inds
    if (inds):
        index = inds[0]

        formula, error_x, error_y = trace['customdata'][index]
        model_instance = trace['meta']['model']
        model = ''.join(c for c in model_instance if not c.isdigit())
        tools = trace['meta']['tools']
        logs_folder = trace['meta']['folder']

        filename_x = get_filename(logs_folder, tools['x'], model, model_instance, formula)
        filename_y = get_filename(logs_folder, tools['y'], model, model_instance, formula)

        for f in [filename_x, filename_y]:
            webbrowser.open(f'file://{f}.err')
            webbrowser.open(f'file://{f}.out')

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
OPEN_LOGS_CALLBACK_JS = """
function get_filename (base_path, tool, model_instance, formula) {
  const information = tool.split('_');
  const size = information.length;

  const tool_name = information[0];
  const tool_configuration = information.slice(0, size - 2).join('_');
  const nb_nodes = information[size - 2];
  const nb_cores = information[size - 1];

  const model = model_instance.replace(/[0-9]/g, '');

  const experiment_folder = `${base_path}/${tool_name}/${tool_configuration}/${model}/${model_instance}`;
  const filename = `${tool_name}_${model_instance}-n${nb_nodes}-th${nb_cores}-f${formula}`;

  return `${experiment_folder}/${filename}`;
}

const plots = document.getElementsByClassName("plotly-graph-div js-plotly-plot");
const myPlot = plots[0];

myPlot.on('plotly_click', function(data){
    const points = data.points;
    if (points.length != 1) {return ;}
    
    const myPoint = points[0];
    const formula = myPoint.customdata[0];
    const meta = myPoint.data.meta;
    
    const href = window.location.href.split('/');
Jaime Arias's avatar
Jaime Arias committed
390
    const base_path = href.splice(0,href.length-4).join('/');
391
    
Jaime Arias's avatar
Jaime Arias committed
392
393
    const filename_x = get_filename(base_path, meta.tools.x, meta.model, formula);
    const filename_y = get_filename(base_path, meta.tools.y, meta.model, formula);
394
395
396
397
398
399
400
401
402
403
404
    
    console.log('x: ' + filename_x);
    window.open(`${filename_x}.err`);
    window.open(`${filename_x}.out`);
    
    console.log('y: ' + filename_y);
    window.open(`${filename_y}.err`);
    window.open(`${filename_y}.out`);
});
"""

405

406
# In[8]:
407
408


Jaime Arias's avatar
Jaime Arias committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
def create_figure_explored_states(table_explored_states, model):
    """Creates figure showing the number of explorated states during the verification 
    
    Parameters
    ----------
    table_explored_states : pandas.Dataframe
        Dataframe with the explorated states of each experiment
    model : string
        Model to be analyzed
        
    Returns
    -------
    plotly.graph_objects.Figure
        Scatter figure
    """
    colors={'T': 'green', 'F': 'red'}
    float_formatter = "{:.2E}".format

    table_model = table_explored_states[table_explored_states.property != 'U']
    table_model = table_model[table_model.model == model]

    table_stats = table_model.groupby(['property']).agg(['mean']) 

    fig = go.Figure()
Jaime Arias's avatar
Jaime Arias committed
433
    max_x = 0
Jaime Arias's avatar
Jaime Arias committed
434
435
436
437
438
    for p in table_stats.index:
        data = table_model[table_model.property==p]
        stats = table_stats.loc[p]
        
        x_axis = np.arange(1, data['formula'].count()+1, 1)
Jaime Arias's avatar
Jaime Arias committed
439
        max_x = max(max_x, x_axis[-1]+1)
Jaime Arias's avatar
Jaime Arias committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
        mean = stats['explored_states','mean']
        
        figure = px.scatter(data, 
                            x=x_axis, 
                            y="explored_states",
                            title=model, 
                            color='property',
                            color_discrete_map=colors,
                            symbol_sequence=["circle"])

        line = go.Scatter(x=[x_axis[0], x_axis[-1]], 
                          y=[mean, mean],
                          mode='lines', showlegend=False,                          
                          line=dict(color=colors[p], width=1.5))

        fig.add_trace(figure['data'][0])
        fig.add_trace(line)
        
        fig.add_annotation(x=1, 
                           y=mean,
                           font=dict(color=colors[p]),
                           text=f"mean = {float_formatter(mean)}")

    fig.update_layout(title_text=model, title=LAYOUT_FIGURES['title'], 
                      width = 500, height = 500, margin=dict(r=110))
    
Jaime Arias's avatar
Jaime Arias committed
466
    fig.update_xaxes(title="formula", range=[0, max_x])
Jaime Arias's avatar
Jaime Arias committed
467
468
469
470
471
472
473
474
475
476
477
    fig.update_yaxes(title="# explored states")
    
    fig.update_annotations(dict(
        showarrow=False,
        xanchor="left",
        yanchor="middle",
        xref='paper'))
    
    return fig


Jaime Arias's avatar
Jaime Arias committed
478
# In[9]:
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549


# Experiment filters

def versus_dfs(experiments):
    """Selects only experiments using DFS strategy"""
    exp1, exp2 = experiments
    strategy_exp1= exp1.split('_')[1]
    strategy_exp2= exp2.split('_')[1]
    
    return strategy_exp1 == 'dfs' or strategy_exp2 == 'dfs'

def versus_sequential(experiments):
    """Selects only experiments run sequentially """
    exp1, exp2 = experiments
    nodes_exp1, threads_exp1 = exp1.split('_')[-2:]
    nodes_exp2, threads_exp2 = exp2.split('_')[-2:]

    return (nodes_exp1 == '1' and nodes_exp2 == '1') and             (threads_exp1 == '1' or threads_exp2 == '1')

def same_tool(experiments, tool):
    """Selects only experiments comparing the same tool"""
    exp1, exp2 = experiments
    tool_exp1= exp1.split('_')[0]
    tool_exp2= exp2.split('_')[0]
    return tool_exp1.startswith(tool) and tool_exp2.startswith(tool)

def same_number_threads(experiments):
    """Selects only experiments comparing the same number of processes and cores"""
    exp1, exp2 = experiments
    nodes_exp1, threads_exp1 = exp1.split('_')[-2:]
    nodes_exp2, threads_exp2 = exp2.split('_')[-2:]
    return (nodes_exp1 == nodes_exp2) and (threads_exp1 == threads_exp2) 

def same_thread_library(experiments):
    """Selects only experiments comparing the same parallelization library"""
    exp1, exp2 = experiments
    library_exp1 = exp1.split('_')[1]
    library_exp2 = exp2.split('_')[1]
    return library_exp1 == library_exp2

def same_strategy(experiments):
    """Selects only experiments comparing the same strategy"""
    exp1, exp2 = experiments
    strategy_exp1 = exp1.split('_')[2]
    strategy_exp2 = exp2.split('_')[2]
    return strategy_exp1 == strategy_exp2

def only_couvreur_strategy(experiments):
    """Selects only experiments comparing couvreur emptiness check algorithm"""
    exp1, exp2 = experiments
    strategy_exp1 = exp1.split('_')[2]
    strategy_exp2 = exp2.split('_')[2]
    return strategy_exp1.startswith('couv99') and strategy_exp2.startswith('couv99')

def compare_threads_library(experiments):
    """Compares parallization libraries used in pmc-sog. 
    
    It selects experiments where the tool is only pmc-sog and the strategy, number of threads, 
    number of processus are the same.
    """
    return same_tool(experiments, 'pmc-sog') and             same_strategy(experiments) and             same_number_threads(experiments) and             not same_thread_library(experiments)

def compare_couvreur_strategies(experiments):
    """Compares couvreurs strategies used in pmc-sog. 
    
    It selects experiments where the tool is only pmc-sog, the strategy is couvreur, and 
    the parallelization library, number of threads, number of processus are the same.
    """
    return only_couvreur_strategy(experiments) and             same_thread_library(experiments) and             same_number_threads(experiments)

550
551
552
553
554
555
556
def same_distributed_number_threads(experiments):
    """Selects only experiments where the multiplication of theirs nodes with cores are the same."""
    exp1, exp2 = experiments
    nodes_exp1, threads_exp1 = exp1.split('_')[-2:]
    nodes_exp2, threads_exp2 = exp2.split('_')[-2:]
    return (int(nodes_exp1) * int(threads_exp1)) == (int(nodes_exp2) * int(threads_exp2))

557
558
559
560
561
562
def compare_tools(experiments):
    """Compares pmc-sog and pnml2lts-mc using the DFS algorithm. 
    
    It selects experiments where the tools are not the same, the exploration algorithm is DFS and 
    the number of processus and cores are the same.
    """
563
    return not (same_tool(experiments, 'pmc-sog') or same_tool(experiments,'pnml2lts-mc')) and             versus_dfs(experiments)
564
565
566
567
568
569
570
571
572

def compare_multithreading(experiments):
    """Compares the sequential and multi-core version of pmc-sog. 
    
    It selects experiments where the tools is pmc-sog, the parallelization library, the emptiness check 
    strategy are the same. Here the number of processus and cores are different.
    """
    return same_tool(experiments, 'pmc-sog') and             same_thread_library(experiments) and             same_strategy(experiments) and             versus_sequential(experiments)

573
574
575
576
577
578
579
580
def against_hybrid(experiments):
    """Selects only experiments comparing with hybrid mode"""
    exp1, exp2 = experiments
    library_exp1 = exp1.split('_')[1]
    library_exp2 = exp2.split('_')[1]
    return (library_exp1 == 'otf') or (library_exp2 == 'otf')


581
582
def compare_distributed(experiments):
    """Compares the hybrid version of pmc-sog"""
583
    return same_tool(experiments, 'pmc-sog') and         same_strategy(experiments) and         same_distributed_number_threads(experiments) and         against_hybrid(experiments)
584

Jaime Arias's avatar
Jaime Arias committed
585
586
587
def compare_others(experiments):
    return (not compare_threads_library(experiments)) and         (not compare_couvreur_strategies(experiments)) and         (not compare_tools(experiments)) and         (not compare_multithreading(experiments)) and         (not compare_distributed(experiments))

588
589
590
591
592
# Plots to be created
plots = {
    'compare_thread_library': compare_threads_library,
    'compare_couvreur_algorithm': compare_couvreur_strategies,
    'compare_tools': compare_tools,
593
    'compare_multicore': compare_multithreading,
Jaime Arias's avatar
Jaime Arias committed
594
595
    'compare_distributed': compare_distributed,
    'others' : compare_others
596
597
598
599
600
}


# # Load Data

Jaime Arias's avatar
Jaime Arias committed
601
# In[10]:
602
603
604
605
606
607
608
609
610
611
612
613
614


# Root folder
PROJECT_FOLDER = os.path.abspath(os.pardir)

# csv file with the output
csv_file = os.path.join(PROJECT_FOLDER, "results", "output.csv")

# Output folder
OUTPUT_FOLDER = os.path.join(PROJECT_FOLDER,"results", "figures")
create_folder(OUTPUT_FOLDER)


Jaime Arias's avatar
Jaime Arias committed
615
# In[11]:
616
617
618
619
620
621
622
623
624
625
626
627


# read data
df = pd.read_csv(csv_file)

# merge the information related to the experiment (# nodes, # threads, strategy) to the tool column
df['tool'] = df[['tool', 'strategy', 'num_nodes', 'num_threads']].astype(str).apply('_'.join, axis=1)
df = df.drop(columns=['strategy', 'num_nodes', 'num_threads'])

df.head()


Jaime Arias's avatar
Jaime Arias committed
628
# In[12]:
629
630
631
632
633
634
635
636


# ground truth for properties
p_df = pd.read_csv(csv_file)
p_df =p_df[
    (p_df.tool=='pnml2lts-mc') & 
    (p_df.strategy == 'ndfs') & 
    (p_df.num_nodes == 1) & 
637
    (p_df.num_threads == 16)]
638
639

# only property column is needed
Jaime Arias's avatar
Jaime Arias committed
640
p_df = p_df.drop(columns=['tool', 'strategy', 'num_nodes', 'num_threads', 'time', 'explored_states', 'error'])
641
642
643
644
645
646
647
p_df.fillna('U', inplace=True)
p_df.set_index(['model', 'formula'], inplace=True)
p_df.sort_index(inplace=True)

p_df.head()


Jaime Arias's avatar
Jaime Arias committed
648
# In[13]:
649
650
651
652
653
654
655
656
657


# table with times, verification output and error for each experiment
table = df.set_index(['model', 'formula', 'tool'], drop=True).unstack('tool')
table.head()


# # Preprocessing of data

Jaime Arias's avatar
Jaime Arias committed
658
# In[14]:
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675


# table with times for each experiment
table_time = table['time'].copy()

# replace non finished experiments with a dummy value, e.g. timeout
table_time.fillna(TIMEOUT, inplace=True)

# replace 0.00 time for 10^(-5), we cannot plot log(0)
table_time.replace(0.0, ZERO, inplace=True)

# add verification output to the table
table_time = pd.concat([table_time, p_df], axis=1)

table_time.head()


676
# In[15]:
677
678
679
680
681
682
683
684
685
686
687
688
689
690


# table with verification output for each experiment
table_property = table['property'].copy()

# replace non finished experiments with a dummy value
table_property.fillna('U', inplace=True)

# add ground truth to the table
table_property = pd.concat([table_property, p_df], axis=1)

table_property.head()


691
# In[16]:
692
693
694
695
696
697
698
699


# table with error for each experiment
table_error = table['error'].copy()

table_error.head()


700
# In[17]:
Jaime Arias's avatar
Jaime Arias committed
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717


# table with explored states for each experiment using ltsmin
table_explored_states = table.copy()
table_explored_states = table_explored_states['explored_states']
table_explored_states = table_explored_states[['pnml2lts-mc_dfs_1_16']]
table_explored_states = table_explored_states.rename(columns={"pnml2lts-mc_dfs_1_16": "explored_states"})

# add verification output to the table
table_explored_states = pd.concat([table_explored_states, p_df], axis=1)

# reshape
table_explored_states = table_explored_states.reset_index()

table_explored_states.head()


718
# In[18]:
Jaime Arias's avatar
Jaime Arias committed
719
720
721
722
723
724
725
726
727


# calculate the stats of the number of explored states

table_explored_states_stats = table_explored_states.groupby(['model', 'property']).agg(['mean', 'min', 'max'])
table_explored_states_stats = table_explored_states_stats['explored_states']
table_explored_states_stats.head()


728
729
# # Examples

730
# In[19]:
731
732


Jaime Arias's avatar
Jaime Arias committed
733
create_figure_explored_states(table_explored_states, 'spool1')
734
735


736
# In[20]:
Jaime Arias's avatar
Jaime Arias committed
737
738


Jaime Arias's avatar
Jaime Arias committed
739
create_figure(df, "spool1")
740
741


742
# In[ ]:
Jaime Arias's avatar
Jaime Arias committed
743
744


Jaime Arias's avatar
Jaime Arias committed
745
create_log_figure(table_time, table_error, "spool1", "pmc-sog_otf_couv99-default_2_16", "pnml2lts-mc_dfs_1_16", True, open_logs_callback)
746
747
748
749


# # Generate Figures

750
# In[ ]:
751
752
753
754
755
756
757
758
759


# models
models = df.model.unique()

# tools 
tools = df.tool.unique()


Jaime Arias's avatar
Jaime Arias committed
760
761
762
763
764
765
766
767
768
769
770
771
772
# In[ ]:


# create all the figures of explored states

folder = os.path.join(OUTPUT_FOLDER, 'explored-states')
create_folder(folder)

for model in models:
    try:
        fig = create_figure_explored_states(table_explored_states, model)
        
        # save figures in html and pdf
773
        fig.write_html(os.path.join(folder, model + '.html'), include_plotlyjs='cdn')
Jaime Arias's avatar
Jaime Arias committed
774
775
776
777
778
779
        fig.write_image(os.path.join(folder, model + '.pdf'))
    except KeyError:
        print("Error: {} was not plotted".format(model))


# In[ ]:
780
781
782
783
784
785
786
787
788
789
790
791


# create all the figures formula vs time

folder = os.path.join(OUTPUT_FOLDER, 'time-plots')
create_folder(folder)

for model in models:
    try:
        fig = create_figure(df, model)
        
        # save figures in html and pdf
Jaime Arias's avatar
Jaime Arias committed
792
        fig.write_html(os.path.join(folder, model + '.html'), include_plotlyjs='cdn')
793
794
795
796
797
        fig.write_image(os.path.join(folder, model + '.pdf'))
    except KeyError:
        print("Error: {} was not plotted".format(model))


Jaime Arias's avatar
Jaime Arias committed
798
# In[ ]:
799
800
801
802


# create all the log figures

Jaime Arias's avatar
Jaime Arias committed
803
tools_pairs = [sorted(t) for t in (combinations(tools, 2))]
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818

for plot, filter_method in plots.items():
    axes = list(filter(filter_method, tools_pairs))
    
    for model in models:
        folder = os.path.join(OUTPUT_FOLDER, plot, model)
        create_folder(folder)
        
        for axe in axes:
            try:
                show_strategy = plot == 'compare_couvreur_algorithm'
                fig = create_log_figure(table_time, table_error, model, axe[0], axe[1], show_strategy)
                
                # save figures in html and pdf
                figure_name = os.path.join(folder, '{}-{}-VS-{}-log'.format(model, axe[0], axe[1]))
Jaime Arias's avatar
Jaime Arias committed
819
                fig.write_html(figure_name + '.html', include_plotlyjs='cdn', post_script=OPEN_LOGS_CALLBACK_JS)
820
821
822
823
824
825
826
827
828
829
                fig.write_image(figure_name + '.pdf')
            except KeyError:
                print("Error: {} was not plotted".format(model))


# In[ ]: