plot-results.ipynb 182 KB
Newer Older
Jaime Arias's avatar
Jaime Arias committed
1
2
3
4
{
 "cells": [
  {
   "cell_type": "code",
5
   "execution_count": 1,
Jaime Arias's avatar
Jaime Arias committed
6
7
   "metadata": {},
   "outputs": [],
8
9
10
11
12
13
14
   "source": [
    "ZERO = 10e-5\n",
    "TIMEOUT = 10 * 60 # 10 minutes = 600 seconds"
   ]
  },
  {
   "cell_type": "code",
Jaime Arias's avatar
Jaime Arias committed
15
   "execution_count": 2,
16
17
   "metadata": {},
   "outputs": [],
Jaime Arias's avatar
Jaime Arias committed
18
19
   "source": [
    "import os\n",
Jaime Arias's avatar
Jaime Arias committed
20
21
    "import glob\n",
    "import re\n",
Jaime Arias's avatar
Jaime Arias committed
22
    "import pandas as pd\n",
Jaime Arias's avatar
Jaime Arias committed
23
    "import numpy as np\n",
Jaime Arias's avatar
Jaime Arias committed
24
25
26
27
    "import plotly.io as pio\n",
    "import plotly.express as px\n",
    "import plotly.graph_objs as go\n",
    "from itertools import combinations \n",
Jaime Arias's avatar
Jaime Arias committed
28
    "import plotly.figure_factory as ff\n",
Jaime Arias's avatar
Jaime Arias committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    "from plotly.subplots import make_subplots\n",
    "\n",
    "# render figures in notebook\n",
    "pio.renderers.default = \"notebook_connected\"\n",
    "\n",
    "# templates figures\n",
    "px.defaults.template = \"simple_white\"\n",
    "pio.templates.default = \"simple_white\"\n",
    "\n",
    "# layout for all figures\n",
    "LAYOUT_FIGURES = dict(\n",
    "    autosize=False,\n",
    "    width = 500,\n",
    "    height = 500,\n",
    "    xaxis = dict(\n",
    "      constrain=\"domain\",\n",
    "      mirror=True,\n",
    "      showexponent=\"all\",\n",
    "      exponentformat=\"power\"\n",
    "    ),\n",
    "    yaxis = dict(\n",
    "      scaleanchor = \"x\",\n",
    "      scaleratio = 1,\n",
    "      mirror=True,\n",
    "      showexponent=\"all\",\n",
    "      exponentformat=\"power\"\n",
    "    ),\n",
    "    title = dict(\n",
    "      y = 0.9,\n",
    "      x = 0.5,\n",
    "      xanchor = 'center',\n",
    "      yanchor = 'top'\n",
    "    )\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Auxiliary Functions"
   ]
  },
  {
   "cell_type": "code",
Jaime Arias's avatar
Jaime Arias committed
74
   "execution_count": 4,
Jaime Arias's avatar
Jaime Arias committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
   "metadata": {},
   "outputs": [],
   "source": [
    "def create_folder(path):\n",
    "    \"\"\"Creates a folder if it does not exist\n",
    "    \n",
    "    Parameters\n",
    "    ----------\n",
    "    path : str\n",
    "        Path of the new folder\n",
    "    \n",
    "    Examples\n",
    "    --------\n",
    "    \n",
    "    >>> create_folder('./results')\n",
    "    \"\"\"\n",
    "    if not os.path.exists(path):\n",
    "        os.makedirs(path)"
   ]
  },
  {
   "cell_type": "code",
Jaime Arias's avatar
Jaime Arias committed
97
   "execution_count": 5,
Jaime Arias's avatar
Jaime Arias committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
   "metadata": {},
   "outputs": [],
   "source": [
    "def create_figure(df, model):\n",
    "    \"\"\"Creates a scatter figure showing the time taken by each tool to verify each property of a model\n",
    "    \n",
    "    Parameters\n",
    "    ----------\n",
    "    df : pandas.Dataframe\n",
    "        Dataframe containing the results of the experiments\n",
    "    model : string\n",
    "        model to be plotted\n",
    "    \n",
    "    Returns\n",
    "    -------\n",
    "    plotly.graph_objects.Figure\n",
    "        Scatter figure\n",
    "    \n",
    "    Examples\n",
    "    --------\n",
    "    \n",
    "    >>> import os\n",
    "    >>> import pandas as pd\n",
    "    >>> csv_file = os.path.join(\"results\", \"output.csv\")\n",
    "    >>> df = pd.read_csv(csv_file)\n",
    "    >>> fig = create_figure(df, 'philo10')\n",
    "    \"\"\"\n",
    "    model_df = df[df.model == model]\n",
    "\n",
    "    figure = px.scatter(model_df, \n",
    "                        x=\"formula\", y=\"time\",\n",
    "                        title=model, \n",
    "                        color=\"tool\", \n",
    "                        symbol_sequence=['x'])\n",
    "\n",
    "    figure.update_layout(yaxis_title=\"time (s)\", title=LAYOUT_FIGURES['title'])\n",
    "    return figure"
   ]
  },
  {
   "cell_type": "code",
Jaime Arias's avatar
Jaime Arias committed
139
   "execution_count": 6,
Jaime Arias's avatar
Jaime Arias committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_axis_title(experiment, show_strategy=True):\n",
    "    \"\"\"Get the axis title of a figure depending on the experiment being plotted\n",
    "    \n",
    "    Parameters\n",
    "    ----------\n",
    "    experiment : str\n",
    "        String with the experiment information\n",
    "    show_strategy : bool, optional\n",
    "        Flag to show the information related to the strategy used by the tool\n",
    "    \n",
    "    Returns\n",
    "    -------\n",
    "    str\n",
    "        axis title\n",
    "        \n",
    "    Examples\n",
    "    --------\n",
    "    \n",
    "    >>> get_axis_title('pmc-sog_otfL_couv99-default_1_1', True)\n",
    "    pmc-sog (Lace, strategy: couv99-default, # cores: 1)\n",
    "    \"\"\"\n",
    "    information = experiment.split('_')\n",
    "    tool_name = information[0]\n",
    "    \n",
    "    info = []\n",
168
169
170
    "    library_dic = {\n",
    "        'otfL': 'Lace',\n",
    "        'otfP': 'Pthreads',\n",
171
172
    "        'otfC': 'Cthreads',\n",
    "        'otf': 'Hybrid'\n",
173
    "    }\n",
Jaime Arias's avatar
Jaime Arias committed
174
175
    "    \n",
    "    if (len(information) == 5):\n",
176
    "        info.append(library_dic[information[1]])\n",
Jaime Arias's avatar
Jaime Arias committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    "\n",
    "    if (show_strategy):\n",
    "        info.append('strategy: {}'.format(information[-3]))\n",
    "\n",
    "    nb_nodes = int(information[-2])\n",
    "    if (nb_nodes > 1):\n",
    "        info.append('# nodes: {}'.format(nb_nodes))\n",
    "\n",
    "    info.append('# cores: {}'.format(information[-1]))\n",
    "\n",
    "    title = '{} ({})'.format(tool_name, ', '.join(info))\n",
    "    \n",
    "    return title"
   ]
  },
  {
   "cell_type": "code",
Jaime Arias's avatar
Jaime Arias committed
194
   "execution_count": 7,
195
196
197
   "metadata": {},
   "outputs": [],
   "source": [
Jaime Arias's avatar
Jaime Arias committed
198
199
200
    "def get_info(df, model, experiment):\n",
    "    \"\"\"Get some statistics from a table for a specific model and experiment\"\"\"\n",
    "    info = df.loc[model][experiment]\n",
Jaime Arias's avatar
Jaime Arias committed
201
    "    \n",
Jaime Arias's avatar
Jaime Arias committed
202
203
204
205
206
207
208
209
210
211
212
    "    time_limit = info[info==\"TIME LIMIT\"].count()\n",
    "    error = info[(info!=\"TIME LIMIT\") & (info!=\"OK\")].count()\n",
    "    ok = info[info==\"OK\"].count()\n",
    "    \n",
    "    if ((time_limit + error + ok) != info.count()): raise Exception(\"Some information is missing in the table\")\n",
    "    \n",
    "    return {\n",
    "        \"time limit\": time_limit,\n",
    "        \"error\": error,\n",
    "        \"OK\": ok\n",
    "    }\n",
213
214
    "\n",
    "\n",
Jaime Arias's avatar
Jaime Arias committed
215
216
217
    "def get_table(df, model, experiments):\n",
    "    \"\"\"Creates a table with some statistics from a dataframe for a model and experiments\"\"\"\n",
    "    rows=[[\"<b>Experiment</b>\", \"<b>Time Limit</b>\", \"<b>Error</b>\", \"<b>OK</b>\"]]\n",
Jaime Arias's avatar
Jaime Arias committed
218
    "    \n",
Jaime Arias's avatar
Jaime Arias committed
219
220
221
222
223
    "    for experiment in experiments:\n",
    "        info = get_info(df, model, experiment)\n",
    "        rows.append([experiment, info[\"time limit\"], info[\"error\"], info[\"OK\"]])\n",
    "        \n",
    "    return ff.create_table(rows)\n"
Jaime Arias's avatar
Jaime Arias committed
224
225
226
227
   ]
  },
  {
   "cell_type": "code",
Jaime Arias's avatar
Jaime Arias committed
228
   "execution_count": 8,
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "import webbrowser\n",
    "\n",
    "def get_filename(base_path, tool, model, model_instance, formula):\n",
    "    \"\"\"Returns the absolute path of the experiment log\n",
    "    \n",
    "    Parameters\n",
    "    ----------\n",
    "    base_path : string\n",
    "        Path of the folder where logs are saved\n",
    "    tool : string\n",
    "        Tool name\n",
    "    model : string\n",
    "        Model name\n",
    "    model_instance : string\n",
    "        Name of the model instance\n",
    "    formula : string\n",
    "        Identifier of the formula\n",
    "    \n",
    "    Returns\n",
    "    -------\n",
    "    string\n",
    "        Absolute path of the log file\n",
    "    \n",
    "    \"\"\"\n",
    "    information = tool.split('_')\n",
    "    \n",
    "    tool_name = information[0]\n",
    "    tool_configuration = '_'.join(information[:-2])\n",
    "    nb_nodes = information[-2]\n",
    "    nb_cores = information[-1]\n",
    "    \n",
    "    experiment_folder = os.path.join(base_path, tool_name, tool_configuration, model, model_instance)\n",
    "    filename = f'{tool_name}_{model_instance}-n{nb_nodes}-th{nb_cores}-f{formula}'\n",
    "    absolute_path = os.path.join(experiment_folder, filename)\n",
    "    \n",
    "    return absolute_path\n",
    "\n",
    "def open_logs_callback(trace, points, selector):\n",
    "    \"\"\"Callback that open the log files when clicking on a point of the figure\n",
    "    \n",
    "    Parameters\n",
    "    ----------\n",
    "    trace : plotly.graph_objects.Figure\n",
    "        the figure to attach the callback\n",
    "    points : plotly.callbacks.Points \n",
    "        points of the figure selected\n",
    "    selector: plotly.callbacks.InputDeviceState \n",
    "        Device information \n",
    "    \"\"\"\n",
    "    inds = points.point_inds\n",
    "    if (inds):\n",
    "        index = inds[0]\n",
    "\n",
    "        formula, error_x, error_y = trace['customdata'][index]\n",
    "        model_instance = trace['meta']['model']\n",
    "        model = ''.join(c for c in model_instance if not c.isdigit())\n",
    "        tools = trace['meta']['tools']\n",
    "        logs_folder = trace['meta']['folder']\n",
    "\n",
    "        filename_x = get_filename(logs_folder, tools['x'], model, model_instance, formula)\n",
    "        filename_y = get_filename(logs_folder, tools['y'], model, model_instance, formula)\n",
    "\n",
    "        for f in [filename_x, filename_y]:\n",
    "            webbrowser.open(f'file://{f}.err')\n",
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    "            webbrowser.open(f'file://{f}.out')\n",
    "\n",
    "OPEN_LOGS_CALLBACK_JS = \"\"\"\n",
    "function get_filename (base_path, tool, model_instance, formula) {\n",
    "  const information = tool.split('_');\n",
    "  const size = information.length;\n",
    "\n",
    "  const tool_name = information[0];\n",
    "  const tool_configuration = information.slice(0, size - 2).join('_');\n",
    "  const nb_nodes = information[size - 2];\n",
    "  const nb_cores = information[size - 1];\n",
    "\n",
    "  const model = model_instance.replace(/[0-9]/g, '');\n",
    "\n",
    "  const experiment_folder = `${base_path}/${tool_name}/${tool_configuration}/${model}/${model_instance}`;\n",
    "  const filename = `${tool_name}_${model_instance}-n${nb_nodes}-th${nb_cores}-f${formula}`;\n",
    "\n",
    "  return `${experiment_folder}/${filename}`;\n",
    "}\n",
    "\n",
    "const plots = document.getElementsByClassName(\"plotly-graph-div js-plotly-plot\");\n",
    "const myPlot = plots[0];\n",
    "\n",
    "myPlot.on('plotly_click', function(data){\n",
    "    const points = data.points;\n",
    "    if (points.length != 1) {return ;}\n",
    "    \n",
    "    const myPoint = points[0];\n",
    "    const formula = myPoint.customdata[0];\n",
    "    const meta = myPoint.data.meta;\n",
    "    \n",
    "    const href = window.location.href.split('/');\n",
Jaime Arias's avatar
Jaime Arias committed
330
    "    const base_path = href.splice(0,href.length-4).join('/');\n",
331
    "    \n",
Jaime Arias's avatar
Jaime Arias committed
332
333
    "    const filename_x = get_filename(base_path, meta.tools.x, meta.model, formula);\n",
    "    const filename_y = get_filename(base_path, meta.tools.y, meta.model, formula);\n",
334
335
336
337
338
339
340
341
342
343
    "    \n",
    "    console.log('x: ' + filename_x);\n",
    "    window.open(`${filename_x}.err`);\n",
    "    window.open(`${filename_x}.out`);\n",
    "    \n",
    "    console.log('y: ' + filename_y);\n",
    "    window.open(`${filename_y}.err`);\n",
    "    window.open(`${filename_y}.out`);\n",
    "});\n",
    "\"\"\"\n"
344
345
346
347
   ]
  },
  {
   "cell_type": "code",
Jaime Arias's avatar
Jaime Arias committed
348
   "execution_count": 9,
Jaime Arias's avatar
Jaime Arias committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
   "metadata": {},
   "outputs": [],
   "source": [
    "def create_figure_explored_states(table_explored_states, model):\n",
    "    \"\"\"Creates figure showing the number of explorated states during the verification \n",
    "    \n",
    "    Parameters\n",
    "    ----------\n",
    "    table_explored_states : pandas.Dataframe\n",
    "        Dataframe with the explorated states of each experiment\n",
    "    model : string\n",
    "        Model to be analyzed\n",
    "        \n",
    "    Returns\n",
    "    -------\n",
    "    plotly.graph_objects.Figure\n",
    "        Scatter figure\n",
    "    \"\"\"\n",
    "    colors={'T': 'green', 'F': 'red'}\n",
    "    float_formatter = \"{:.2E}\".format\n",
    "\n",
    "    table_model = table_explored_states[table_explored_states.property != 'U']\n",
    "    table_model = table_model[table_model.model == model]\n",
    "\n",
    "    table_stats = table_model.groupby(['property']).agg(['mean']) \n",
    "\n",
    "    fig = go.Figure()\n",
Jaime Arias's avatar
Jaime Arias committed
376
    "    max_x = 0\n",
Jaime Arias's avatar
Jaime Arias committed
377
378
379
380
381
    "    for p in table_stats.index:\n",
    "        data = table_model[table_model.property==p]\n",
    "        stats = table_stats.loc[p]\n",
    "        \n",
    "        x_axis = np.arange(1, data['formula'].count()+1, 1)\n",
Jaime Arias's avatar
Jaime Arias committed
382
    "        max_x = max(max_x, x_axis[-1]+1)\n",
Jaime Arias's avatar
Jaime Arias committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    "        mean = stats['explored_states','mean']\n",
    "        \n",
    "        figure = px.scatter(data, \n",
    "                            x=x_axis, \n",
    "                            y=\"explored_states\",\n",
    "                            title=model, \n",
    "                            color='property',\n",
    "                            color_discrete_map=colors,\n",
    "                            symbol_sequence=[\"circle\"])\n",
    "\n",
    "        line = go.Scatter(x=[x_axis[0], x_axis[-1]], \n",
    "                          y=[mean, mean],\n",
    "                          mode='lines', showlegend=False,                          \n",
    "                          line=dict(color=colors[p], width=1.5))\n",
    "\n",
    "        fig.add_trace(figure['data'][0])\n",
    "        fig.add_trace(line)\n",
    "        \n",
    "        fig.add_annotation(x=1, \n",
    "                           y=mean,\n",
    "                           font=dict(color=colors[p]),\n",
    "                           text=f\"mean = {float_formatter(mean)}\")\n",
    "\n",
    "    fig.update_layout(title_text=model, title=LAYOUT_FIGURES['title'], \n",
    "                      width = 500, height = 500, margin=dict(r=110))\n",
    "    \n",
Jaime Arias's avatar
Jaime Arias committed
409
    "    fig.update_xaxes(title=\"formula\", range=[0, max_x])\n",
Jaime Arias's avatar
Jaime Arias committed
410
411
412
413
414
415
416
417
418
419
420
    "    fig.update_yaxes(title=\"# explored states\")\n",
    "    \n",
    "    fig.update_annotations(dict(\n",
    "        showarrow=False,\n",
    "        xanchor=\"left\",\n",
    "        yanchor=\"middle\",\n",
    "        xref='paper'))\n",
    "    \n",
    "    return fig"
   ]
  },
Jaime Arias's avatar
Jaime Arias committed
421
422
  {
   "cell_type": "code",
Jaime Arias's avatar
Jaime Arias committed
423
   "execution_count": 10,
Jaime Arias's avatar
Jaime Arias committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
   "metadata": {},
   "outputs": [],
   "source": [
    "def create_log_figure(table, table_errors, model, tool_x, tool_y, show_strategy=True, callback=None):\n",
    "    \"\"\"Creates a Scatter figure in logarithmic scale comparing the performance of two tools\n",
    "    \n",
    "    Parameters\n",
    "    ----------\n",
    "    table : pandas.Dataframe\n",
    "        Dataframe with the times of each experiment\n",
    "    table_errors : pandas.Dataframe\n",
    "        Dataframe with the errors of each experiment\n",
    "    model : string\n",
    "        Model to be analyzed\n",
    "    tool_x : string\n",
    "        Tool to be compared and plotted on the x-axis\n",
    "    tool_y : string\n",
    "        Tool to be compared and plotted on the y-axis\n",
    "    show_strategy : bool\n",
    "        Flag to show the stretagy used by the tools\n",
    "    callback : function\n",
    "        Function to be called when clicking on a point\n",
    "        \n",
    "    Returns\n",
    "    -------\n",
    "    plotly.graph_objects.Figure\n",
    "        Scatter figure\n",
    "        \n",
    "    Examples\n",
    "    --------\n",
    "    >>> import os\n",
    "    >>> import pandas as pd\n",
    "    >>> csv_file = os.path.join(\"results\", \"output.csv\")\n",
    "    >>> df = pd.read_csv(csv_file)\n",
    "    >>> table = df.set_index(['model', 'formula', 'tool'], drop=True).unstack('tool')\n",
    "    >>> fig = create_log_figure(table['time'], table['error'], 'philo10', 'pmc-sog_otfL_couv99-default_1_8', 'pmc-sog_otfP_couv99-default_1_8')\n",
    "    \"\"\"\n",
    "    try:\n",
    "        min_value = ZERO\n",
    "        max_value = TIMEOUT\n",
    "        \n",
    "        min_value_log = np.log10(min_value)\n",
    "        max_value_log = np.log10(max_value)\n",
    "\n",
    "        table_model = table.loc[model]\n",
    "        table_errors_model = table_error.loc[model]\n",
    "        \n",
    "        full_table_x = pd.concat([table_model[tool_x],table_model['property'], table_errors_model[tool_x]], axis=1)\n",
    "        full_table_x.columns = ['time', 'property', 'error']\n",
    "\n",
    "        full_table_y = pd.concat([table_model[tool_y],table_model['property'], table_errors_model[tool_y]], axis=1)\n",
    "        full_table_y.columns = ['time', 'property', 'error']\n",
    "\n",
    "        traces = [\n",
    "            {\"property\": 'T', \"color\":\"green\"},\n",
    "            {\"property\": 'F', \"color\":\"red\"},\n",
    "            {\"property\": 'U', \"color\":\"black\"}\n",
    "        ]\n",
    "\n",
    "        figures = []\n",
    "        for t in traces:\n",
    "            # filter by verification output\n",
    "            table_x = full_table_x[full_table_x.property == t['property']]\n",
    "            table_y = full_table_y[full_table_y.property == t['property']]\n",
    "\n",
    "            # custom data\n",
    "            custom_data = list(zip(table_x.index, table_x.error,table_y.error))\n",
    "            \n",
    "            # tools\n",
    "            metainfo = {\n",
    "                'model': model, \n",
    "                'tools': {'x': tool_x, 'y': tool_y},\n",
    "                'folder': os.path.join(os.path.abspath(os.pardir), \"results\")\n",
    "            }\n",
    "\n",
    "            figures.append(go.Scatter(x=table_x.time,\n",
    "                                      y=table_y.time,\n",
    "                                      name=t['property'],\n",
    "                                      mode='markers',\n",
    "                                      marker_symbol='circle-open',\n",
    "                                      marker_color=t['color'],\n",
    "                                      meta = metainfo,\n",
    "                                      customdata=custom_data,\n",
    "                                      hovertemplate =\n",
    "                                        '<b>Formula # %{customdata[0]}</b><br>' +\n",
    "                                        '<br><b>Times:</b><br>' +\n",
    "                                        '<b>x:</b> %{x} s' +\n",
    "                                        '<br><b>y:</b> %{y} s<br>' +\n",
    "                                        '<br><b>Errors:</b><br>' +\n",
    "                                        '<b>x:</b> %{customdata[1]}<br>' +\n",
    "                                        '<b>y:</b> %{customdata[2]}',\n",
    "                                        ))    \n",
    "\n",
    "        # Line\n",
    "        figures.append(go.Scatter(x=[min_value, max_value], \n",
    "                                    y=[min_value, max_value],\n",
    "                                    mode='lines', showlegend=False,\n",
    "                                    line=dict(color='black', width=1)))\n",
    "\n",
    "        # Create figure\n",
    "        figure = go.FigureWidget(figures)\n",
    "        figure.update_layout(LAYOUT_FIGURES,\n",
    "                             title_text=model,\n",
    "                             hoverlabel=dict(bgcolor=\"white\", align='auto'),\n",
    "                             legend_title_text='property',\n",
    "                             xaxis=dict(type='log', autorange=False, range=[min_value_log, max_value_log]),\n",
    "                             yaxis=dict(type='log', autorange=False, range=[min_value_log, max_value_log]),\n",
    "                             xaxis_title=get_axis_title(tool_x, show_strategy),\n",
    "                             yaxis_title=get_axis_title(tool_y, show_strategy))\n",
    "\n",
    "        # Add event\n",
    "        if callback is not None:\n",
    "            for i in range(len(figure.data)):\n",
    "                figure.data[i].on_click(callback)\n",
    "    \n",
    "        return figure\n",
    "    except Exception as e:\n",
    "        print(\"Error when ploting model: {} - tool_x: {} - tool_y: {}\".format(model, tool_x, tool_y))\n",
    "        print(e)"
   ]
  },
Jaime Arias's avatar
Jaime Arias committed
545
546
  {
   "cell_type": "code",
Jaime Arias's avatar
Jaime Arias committed
547
   "execution_count": 11,
Jaime Arias's avatar
Jaime Arias committed
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
   "metadata": {},
   "outputs": [],
   "source": [
    "# Experiment filters\n",
    "\n",
    "def versus_dfs(experiments):\n",
    "    \"\"\"Selects only experiments using DFS strategy\"\"\"\n",
    "    exp1, exp2 = experiments\n",
    "    strategy_exp1= exp1.split('_')[1]\n",
    "    strategy_exp2= exp2.split('_')[1]\n",
    "    \n",
    "    return strategy_exp1 == 'dfs' or strategy_exp2 == 'dfs'\n",
    "\n",
    "def versus_sequential(experiments):\n",
    "    \"\"\"Selects only experiments run sequentially \"\"\"\n",
    "    exp1, exp2 = experiments\n",
    "    nodes_exp1, threads_exp1 = exp1.split('_')[-2:]\n",
    "    nodes_exp2, threads_exp2 = exp2.split('_')[-2:]\n",
    "\n",
    "    return (nodes_exp1 == '1' and nodes_exp2 == '1') and \\\n",
    "            (threads_exp1 == '1' or threads_exp2 == '1')\n",
    "\n",
    "def same_tool(experiments, tool):\n",
    "    \"\"\"Selects only experiments comparing the same tool\"\"\"\n",
    "    exp1, exp2 = experiments\n",
    "    tool_exp1= exp1.split('_')[0]\n",
    "    tool_exp2= exp2.split('_')[0]\n",
    "    return tool_exp1.startswith(tool) and tool_exp2.startswith(tool)\n",
    "\n",
    "def same_number_threads(experiments):\n",
    "    \"\"\"Selects only experiments comparing the same number of processes and cores\"\"\"\n",
    "    exp1, exp2 = experiments\n",
    "    nodes_exp1, threads_exp1 = exp1.split('_')[-2:]\n",
    "    nodes_exp2, threads_exp2 = exp2.split('_')[-2:]\n",
    "    return (nodes_exp1 == nodes_exp2) and (threads_exp1 == threads_exp2) \n",
    "\n",
    "def same_thread_library(experiments):\n",
    "    \"\"\"Selects only experiments comparing the same parallelization library\"\"\"\n",
    "    exp1, exp2 = experiments\n",
    "    library_exp1 = exp1.split('_')[1]\n",
    "    library_exp2 = exp2.split('_')[1]\n",
    "    return library_exp1 == library_exp2\n",
    "\n",
    "def same_strategy(experiments):\n",
    "    \"\"\"Selects only experiments comparing the same strategy\"\"\"\n",
    "    exp1, exp2 = experiments\n",
    "    strategy_exp1 = exp1.split('_')[2]\n",
    "    strategy_exp2 = exp2.split('_')[2]\n",
    "    return strategy_exp1 == strategy_exp2\n",
    "\n",
    "def only_couvreur_strategy(experiments):\n",
    "    \"\"\"Selects only experiments comparing couvreur emptiness check algorithm\"\"\"\n",
    "    exp1, exp2 = experiments\n",
    "    strategy_exp1 = exp1.split('_')[2]\n",
    "    strategy_exp2 = exp2.split('_')[2]\n",
    "    return strategy_exp1.startswith('couv99') and strategy_exp2.startswith('couv99')\n",
    "\n",
    "def compare_threads_library(experiments):\n",
    "    \"\"\"Compares parallization libraries used in pmc-sog. \n",
    "    \n",
    "    It selects experiments where the tool is only pmc-sog and the strategy, number of threads, \n",
    "    number of processus are the same.\n",
    "    \"\"\"\n",
    "    return same_tool(experiments, 'pmc-sog') and \\\n",
    "            same_strategy(experiments) and \\\n",
    "            same_number_threads(experiments) and \\\n",
    "            not same_thread_library(experiments)\n",
    "\n",
    "def compare_couvreur_strategies(experiments):\n",
    "    \"\"\"Compares couvreurs strategies used in pmc-sog. \n",
    "    \n",
    "    It selects experiments where the tool is only pmc-sog, the strategy is couvreur, and \n",
    "    the parallelization library, number of threads, number of processus are the same.\n",
    "    \"\"\"\n",
    "    return only_couvreur_strategy(experiments) and \\\n",
    "            same_thread_library(experiments) and \\\n",
    "            same_number_threads(experiments)\n",
    "\n",
626
627
628
629
630
631
632
    "def same_distributed_number_threads(experiments):\n",
    "    \"\"\"Selects only experiments where the multiplication of theirs nodes with cores are the same.\"\"\"\n",
    "    exp1, exp2 = experiments\n",
    "    nodes_exp1, threads_exp1 = exp1.split('_')[-2:]\n",
    "    nodes_exp2, threads_exp2 = exp2.split('_')[-2:]\n",
    "    return (int(nodes_exp1) * int(threads_exp1)) == (int(nodes_exp2) * int(threads_exp2))\n",
    "\n",
Jaime Arias's avatar
Jaime Arias committed
633
634
635
636
637
638
    "def compare_tools(experiments):\n",
    "    \"\"\"Compares pmc-sog and pnml2lts-mc using the DFS algorithm. \n",
    "    \n",
    "    It selects experiments where the tools are not the same, the exploration algorithm is DFS and \n",
    "    the number of processus and cores are the same.\n",
    "    \"\"\"\n",
639
    "    return not (same_tool(experiments, 'pmc-sog') or same_tool(experiments,'pnml2lts-mc')) and \\\n",
Jaime Arias's avatar
Jaime Arias committed
640
641
642
643
644
645
646
647
648
649
650
651
652
    "            versus_dfs(experiments)\n",
    "\n",
    "def compare_multithreading(experiments):\n",
    "    \"\"\"Compares the sequential and multi-core version of pmc-sog. \n",
    "    \n",
    "    It selects experiments where the tools is pmc-sog, the parallelization library, the emptiness check \n",
    "    strategy are the same. Here the number of processus and cores are different.\n",
    "    \"\"\"\n",
    "    return same_tool(experiments, 'pmc-sog') and \\\n",
    "            same_thread_library(experiments) and \\\n",
    "            same_strategy(experiments) and \\\n",
    "            versus_sequential(experiments)\n",
    "\n",
653
654
655
656
657
658
659
660
    "def against_hybrid(experiments):\n",
    "    \"\"\"Selects only experiments comparing with hybrid mode\"\"\"\n",
    "    exp1, exp2 = experiments\n",
    "    library_exp1 = exp1.split('_')[1]\n",
    "    library_exp2 = exp2.split('_')[1]\n",
    "    return (library_exp1 == 'otf') or (library_exp2 == 'otf')\n",
    "\n",
    "\n",
661
662
663
664
    "def compare_distributed(experiments):\n",
    "    \"\"\"Compares the hybrid version of pmc-sog\"\"\"\n",
    "    return same_tool(experiments, 'pmc-sog') and \\\n",
    "        same_strategy(experiments) and \\\n",
665
666
    "        same_distributed_number_threads(experiments) and \\\n",
    "        against_hybrid(experiments)\n",
667
    "\n",
Jaime Arias's avatar
Jaime Arias committed
668
669
670
671
672
673
674
    "def compare_others(experiments):\n",
    "    return (not compare_threads_library(experiments)) and \\\n",
    "        (not compare_couvreur_strategies(experiments)) and \\\n",
    "        (not compare_tools(experiments)) and \\\n",
    "        (not compare_multithreading(experiments)) and \\\n",
    "        (not compare_distributed(experiments))\n",
    "\n",
Jaime Arias's avatar
Jaime Arias committed
675
676
677
678
679
    "# Plots to be created\n",
    "plots = {\n",
    "    'compare_thread_library': compare_threads_library,\n",
    "    'compare_couvreur_algorithm': compare_couvreur_strategies,\n",
    "    'compare_tools': compare_tools,\n",
680
    "    'compare_multicore': compare_multithreading,\n",
Jaime Arias's avatar
Jaime Arias committed
681
682
    "    'compare_distributed': compare_distributed,\n",
    "    'others' : compare_others\n",
Jaime Arias's avatar
Jaime Arias committed
683
684
685
686
687
688
689
690
691
692
693
694
    "}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Load Data"
   ]
  },
  {
   "cell_type": "code",
Jaime Arias's avatar
Jaime Arias committed
695
   "execution_count": 12,
Jaime Arias's avatar
Jaime Arias committed
696
697
698
699
700
701
702
703
704
   "metadata": {},
   "outputs": [],
   "source": [
    "# Root folder\n",
    "PROJECT_FOLDER = os.path.abspath(os.pardir)\n",
    "\n",
    "# csv file with the output\n",
    "csv_file = os.path.join(PROJECT_FOLDER, \"results\", \"output.csv\")\n",
    "\n",
Jaime Arias's avatar
Jaime Arias committed
705
706
707
    "# formulas folder\n",
    "FORMULAS_FOLDER = os.path.join(PROJECT_FOLDER, \"formulas\")\n",
    "\n",
Jaime Arias's avatar
Jaime Arias committed
708
709
710
711
712
713
714
    "# Output folder\n",
    "OUTPUT_FOLDER = os.path.join(PROJECT_FOLDER,\"results\", \"figures\")\n",
    "create_folder(OUTPUT_FOLDER)"
   ]
  },
  {
   "cell_type": "code",
Jaime Arias's avatar
Jaime Arias committed
715
   "execution_count": 13,
Jaime Arias's avatar
Jaime Arias committed
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>model</th>\n",
       "      <th>formula</th>\n",
       "      <th>tool</th>\n",
       "      <th>time</th>\n",
       "      <th>property</th>\n",
Jaime Arias's avatar
Jaime Arias committed
744
       "      <th>explored_states</th>\n",
Jaime Arias's avatar
Jaime Arias committed
745
746
747
748
749
750
       "      <th>error</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
Jaime Arias's avatar
Jaime Arias committed
751
       "      <td>robot20</td>\n",
Jaime Arias's avatar
Jaime Arias committed
752
       "      <td>1</td>\n",
Jaime Arias's avatar
Jaime Arias committed
753
       "      <td>pmc-sog_otfC_couv99-default_1_1</td>\n",
Jaime Arias's avatar
Jaime Arias committed
754
       "      <td>NaN</td>\n",
Jaime Arias's avatar
Jaime Arias committed
755
756
757
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>TIME LIMIT</td>\n",
Jaime Arias's avatar
Jaime Arias committed
758
759
760
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
Jaime Arias's avatar
Jaime Arias committed
761
       "      <td>robot20</td>\n",
Jaime Arias's avatar
Jaime Arias committed
762
       "      <td>1</td>\n",
Jaime Arias's avatar
Jaime Arias committed
763
       "      <td>pmc-sog_otfC_couv99-default_1_16</td>\n",
Jaime Arias's avatar
Jaime Arias committed
764
       "      <td>NaN</td>\n",
Jaime Arias's avatar
Jaime Arias committed
765
766
767
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>TIME LIMIT</td>\n",
Jaime Arias's avatar
Jaime Arias committed
768
769
770
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
Jaime Arias's avatar
Jaime Arias committed
771
       "      <td>robot20</td>\n",
Jaime Arias's avatar
Jaime Arias committed
772
       "      <td>1</td>\n",
Jaime Arias's avatar
Jaime Arias committed
773
       "      <td>pmc-sog_otfC_couv99-shy_1_1</td>\n",
Jaime Arias's avatar
Jaime Arias committed
774
       "      <td>NaN</td>\n",
Jaime Arias's avatar
Jaime Arias committed
775
776
777
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>TIME LIMIT</td>\n",
Jaime Arias's avatar
Jaime Arias committed
778
779
780
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
Jaime Arias's avatar
Jaime Arias committed
781
       "      <td>robot20</td>\n",
Jaime Arias's avatar
Jaime Arias committed
782
       "      <td>1</td>\n",
Jaime Arias's avatar
Jaime Arias committed
783
       "      <td>pmc-sog_otfC_couv99-shy_1_16</td>\n",
Jaime Arias's avatar
Jaime Arias committed
784
       "      <td>NaN</td>\n",
Jaime Arias's avatar
Jaime Arias committed
785
786
787
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>TIME LIMIT</td>\n",
Jaime Arias's avatar
Jaime Arias committed
788
789
790
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
Jaime Arias's avatar
Jaime Arias committed
791
       "      <td>robot20</td>\n",
Jaime Arias's avatar
Jaime Arias committed
792
       "      <td>1</td>\n",
Jaime Arias's avatar
Jaime Arias committed
793
       "      <td>pmc-sog_otfP_couv99-default_1_1</td>\n",
Jaime Arias's avatar
Jaime Arias committed
794
       "      <td>NaN</td>\n",
Jaime Arias's avatar
Jaime Arias committed
795
796
797
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>TIME LIMIT</td>\n",
Jaime Arias's avatar
Jaime Arias committed
798
799
800
801
802
803
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
Jaime Arias's avatar
Jaime Arias committed
804
       "     model  formula                              tool  time property  \\\n",
Jaime Arias's avatar
Jaime Arias committed
805
806
807
808
809
       "0  robot20        1   pmc-sog_otfC_couv99-default_1_1   NaN      NaN   \n",
       "1  robot20        1  pmc-sog_otfC_couv99-default_1_16   NaN      NaN   \n",
       "2  robot20        1       pmc-sog_otfC_couv99-shy_1_1   NaN      NaN   \n",
       "3  robot20        1      pmc-sog_otfC_couv99-shy_1_16   NaN      NaN   \n",
       "4  robot20        1   pmc-sog_otfP_couv99-default_1_1   NaN      NaN   \n",
Jaime Arias's avatar
Jaime Arias committed
810
811
812
813
814
815
816
       "\n",
       "   explored_states       error  \n",
       "0              NaN  TIME LIMIT  \n",
       "1              NaN  TIME LIMIT  \n",
       "2              NaN  TIME LIMIT  \n",
       "3              NaN  TIME LIMIT  \n",
       "4              NaN  TIME LIMIT  "
Jaime Arias's avatar
Jaime Arias committed
817
818
      ]
     },
Jaime Arias's avatar
Jaime Arias committed
819
     "execution_count": 13,
Jaime Arias's avatar
Jaime Arias committed
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# read data\n",
    "df = pd.read_csv(csv_file)\n",
    "\n",
    "# merge the information related to the experiment (# nodes, # threads, strategy) to the tool column\n",
    "df['tool'] = df[['tool', 'strategy', 'num_nodes', 'num_threads']].astype(str).apply('_'.join, axis=1)\n",
    "df = df.drop(columns=['strategy', 'num_nodes', 'num_threads'])\n",
    "\n",
    "df.head()"
   ]
  },
  {
   "cell_type": "code",
Jaime Arias's avatar
Jaime Arias committed
837
   "execution_count": 14,
Jaime Arias's avatar
Jaime Arias committed
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th>property</th>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>model</th>\n",
       "      <th>formula</th>\n",
       "      <th></th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
Jaime Arias's avatar
Jaime Arias committed
872
       "      <th rowspan=\"5\" valign=\"top\">spool5</th>\n",
Jaime Arias's avatar
Jaime Arias committed
873
       "      <th>1</th>\n",
Jaime Arias's avatar
Jaime Arias committed
874
       "      <td>T</td>\n",
Jaime Arias's avatar
Jaime Arias committed
875
876
877
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
Jaime Arias's avatar
Jaime Arias committed
878
       "      <td>F</td>\n",
Jaime Arias's avatar
Jaime Arias committed
879
880
881
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
Jaime Arias's avatar
Jaime Arias committed
882
       "      <td>T</td>\n",
Jaime Arias's avatar
Jaime Arias committed
883
884
885
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
Jaime Arias's avatar
Jaime Arias committed
886
       "      <td>F</td>\n",
Jaime Arias's avatar
Jaime Arias committed
887
888
889
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
Jaime Arias's avatar
Jaime Arias committed
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
       "      <td>T</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th rowspan=\"5\" valign=\"top\">robot20</th>\n",
       "      <th>196</th>\n",
       "      <td>T</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>197</th>\n",
       "      <td>T</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>198</th>\n",
       "      <td>T</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>199</th>\n",
       "      <td>T</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>200</th>\n",
       "      <td>T</td>\n",
Jaime Arias's avatar
Jaime Arias committed
917
918
919
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
Jaime Arias's avatar
Jaime Arias committed
920
       "<p>800 rows × 1 columns</p>\n",
Jaime Arias's avatar
Jaime Arias committed
921
922
923
       "</div>"
      ],
      "text/plain": [
Jaime Arias's avatar
Jaime Arias committed
924
925
       "                property\n",
       "model   formula         \n",
Jaime Arias's avatar
Jaime Arias committed
926
       "spool5  1              T\n",
Jaime Arias's avatar
Jaime Arias committed
927
       "        2              F\n",
Jaime Arias's avatar
Jaime Arias committed
928
       "        3              T\n",
Jaime Arias's avatar
Jaime Arias committed
929
       "        4              F\n",
Jaime Arias's avatar
Jaime Arias committed
930
931
932
933
934
935
936
937
938
       "        5              T\n",
       "...                  ...\n",
       "robot20 196            T\n",
       "        197            T\n",
       "        198            T\n",
       "        199            T\n",
       "        200            T\n",
       "\n",
       "[800 rows x 1 columns]"
Jaime Arias's avatar
Jaime Arias committed
939
940
      ]
     },
Jaime Arias's avatar
Jaime Arias committed
941
     "execution_count": 14,
Jaime Arias's avatar
Jaime Arias committed
942
943
944
945
946
947
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# ground truth for properties\n",
Jaime Arias's avatar
Jaime Arias committed
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
    "frames = []\n",
    "\n",
    "formula_results = glob.glob(os.path.join(FORMULAS_FOLDER, \"**/formula_results\"), recursive=True)\n",
    "for f in formula_results:\n",
    "    model, out_file = f.split('/')[-2:]\n",
    "    \n",
    "    tmp_df = pd.read_csv(f, sep=\";\", header=None, names=[\"formula\", \"property\"])\n",
    "    tmp_df[\"model\"] = model\n",
    "    frames.append(tmp_df)\n",
    "    \n",
    "p_df = pd.concat(frames)\n",
    "p_df = p_df.reindex(columns=[\"model\", \"formula\", \"property\"])\n",
    "p_df = p_df[p_df['model'].isin(df.model.unique())]\n",
    "p_df['property'] = p_df['property'].replace([True, False], [\"T\", \"F\"])\n",
    "p_df = p_df.set_index([\"model\", \"formula\"])\n",
    "\n",
    "p_df"
Jaime Arias's avatar
Jaime Arias committed
965
966
967
968
   ]
  },
  {
   "cell_type": "code",
Jaime Arias's avatar
Jaime Arias committed
969
   "execution_count": 15,
Jaime Arias's avatar
Jaime Arias committed
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead tr th {\n",
       "        text-align: left;\n",
       "    }\n",
       "\n",
       "    .dataframe thead tr:last-of-type th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th colspan=\"10\" halign=\"left\">time</th>\n",
       "      <th>...</th>\n",
       "      <th colspan=\"10\" halign=\"left\">error</th>\n",