plot-results.py 28.1 KB
Newer Older
1
2
3
#!/usr/bin/env python
# coding: utf-8

4
# In[1]:
5
6


7
8
9
10
11
12
13
ZERO = 10e-5
TIMEOUT = 10 * 60 # 10 minutes = 600 seconds


# In[2]:


14
import os
Jaime Arias's avatar
Jaime Arias committed
15
16
import glob
import re
17
import pandas as pd
Jaime Arias's avatar
Jaime Arias committed
18
import numpy as np
19
20
21
22
import plotly.io as pio
import plotly.express as px
import plotly.graph_objs as go
from itertools import combinations 
Jaime Arias's avatar
Jaime Arias committed
23
import plotly.figure_factory as ff
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from plotly.subplots import make_subplots

# render figures in notebook
pio.renderers.default = "notebook_connected"

# templates figures
px.defaults.template = "simple_white"
pio.templates.default = "simple_white"

# layout for all figures
LAYOUT_FIGURES = dict(
    autosize=False,
    width = 500,
    height = 500,
    xaxis = dict(
      constrain="domain",
      mirror=True,
      showexponent="all",
      exponentformat="power"
    ),
    yaxis = dict(
      scaleanchor = "x",
      scaleratio = 1,
      mirror=True,
      showexponent="all",
      exponentformat="power"
    ),
    title = dict(
      y = 0.9,
      x = 0.5,
      xanchor = 'center',
      yanchor = 'top'
    )
)


# # Auxiliary Functions

Jaime Arias's avatar
Jaime Arias committed
62
# In[3]:
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81


def create_folder(path):
    """Creates a folder if it does not exist
    
    Parameters
    ----------
    path : str
        Path of the new folder
    
    Examples
    --------
    
    >>> create_folder('./results')
    """
    if not os.path.exists(path):
        os.makedirs(path)


Jaime Arias's avatar
Jaime Arias committed
82
# In[4]:
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120


def create_figure(df, model):
    """Creates a scatter figure showing the time taken by each tool to verify each property of a model
    
    Parameters
    ----------
    df : pandas.Dataframe
        Dataframe containing the results of the experiments
    model : string
        model to be plotted
    
    Returns
    -------
    plotly.graph_objects.Figure
        Scatter figure
    
    Examples
    --------
    
    >>> import os
    >>> import pandas as pd
    >>> csv_file = os.path.join("results", "output.csv")
    >>> df = pd.read_csv(csv_file)
    >>> fig = create_figure(df, 'philo10')
    """
    model_df = df[df.model == model]

    figure = px.scatter(model_df, 
                        x="formula", y="time",
                        title=model, 
                        color="tool", 
                        symbol_sequence=['x'])

    figure.update_layout(yaxis_title="time (s)", title=LAYOUT_FIGURES['title'])
    return figure


Jaime Arias's avatar
Jaime Arias committed
121
# In[5]:
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151


def get_axis_title(experiment, show_strategy=True):
    """Get the axis title of a figure depending on the experiment being plotted
    
    Parameters
    ----------
    experiment : str
        String with the experiment information
    show_strategy : bool, optional
        Flag to show the information related to the strategy used by the tool
    
    Returns
    -------
    str
        axis title
        
    Examples
    --------
    
    >>> get_axis_title('pmc-sog_otfL_couv99-default_1_1', True)
    pmc-sog (Lace, strategy: couv99-default, # cores: 1)
    """
    information = experiment.split('_')
    tool_name = information[0]
    
    info = []
    library_dic = {
        'otfL': 'Lace',
        'otfP': 'Pthreads',
152
153
        'otfC': 'Cthreads',
        'otf': 'Hybrid'
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    }
    
    if (len(information) == 5):
        info.append(library_dic[information[1]])

    if (show_strategy):
        info.append('strategy: {}'.format(information[-3]))

    nb_nodes = int(information[-2])
    if (nb_nodes > 1):
        info.append('# nodes: {}'.format(nb_nodes))

    info.append('# cores: {}'.format(information[-1]))

    title = '{} ({})'.format(tool_name, ', '.join(info))
    
    return title


Jaime Arias's avatar
Jaime Arias committed
173
# In[6]:
174
175


Jaime Arias's avatar
Jaime Arias committed
176
177
def filter_errors(df_exp1, df_exp2):
    """Returns dataframes of specific experiments without errors"""
178
    
Jaime Arias's avatar
Jaime Arias committed
179
180
181
182
183
184
185
186
    nan_1 = df_exp1[df_exp1.isna().any(axis=1)].index
    nan_2 = df_exp2[df_exp2.isna().any(axis=1)].index

    df_exp1 = df_exp1.drop(nan_2)
    df_exp2 = df_exp2.drop(nan_1)

    df_exp1 = df_exp1.dropna()
    df_exp2 = df_exp2.dropna()
Jaime Arias's avatar
Jaime Arias committed
187
    
Jaime Arias's avatar
Jaime Arias committed
188
189
190
191
192
193
194
195
196
197
198
    return df_exp1, df_exp2


def get_info(info):
    """Get some statistics from a table for a specific model and experiment"""    
    time_limit = len(info[(info.error == "TIME LIMIT") | (info.error == "TIMEOUT")])
    error = len(info[(info.error != "TIME LIMIT") & (info.error != "TIMEOUT") & (info.error != "OK") & (info.error != 'MDD') & (info.error != 'TABLE FULL')])
    memory = len(info[(info.error == 'MDD') | (info.error == 'TABLE FULL')])
    ok = len(info[info.error == "OK"])
    
    if ((time_limit + error + ok + memory) != len(info)): raise Exception("Some information is missing in the table")
Jaime Arias's avatar
Jaime Arias committed
199
200
201
202
    
    return {
        "time limit": time_limit,
        "error": error,
Jaime Arias's avatar
Jaime Arias committed
203
        "memory": memory,
Jaime Arias's avatar
Jaime Arias committed
204
205
        "OK": ok
    }
206
207


Jaime Arias's avatar
Jaime Arias committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
def get_best_times(table_time, table_error, model, exp1, exp2):
    exp1 = pd.DataFrame({"times_exp1": table_time.loc[model][exp1], "errors_exp1": table_error.loc[model][exp1]})
    exp2 = pd.DataFrame({"times_exp2": table_time.loc[model][exp2], "errors_exp2": table_error.loc[model][exp2]})

    exp1, exp2 = filter_errors(exp1, exp2)
    df_ = pd.concat([exp1, exp2], axis=1, sort=False)

    df_ = df_[df_["times_exp1"] != df_["times_exp2"]]
    df_['best'] = np.where((df_["times_exp1"] < df_["times_exp2"]), "exp1", "exp2")
    count = df_.groupby(["best"]).size()

    return count.get("exp1",0), count.get("exp2",0)


def get_table(df_time, df_errors, model, exp1, exp2):
Jaime Arias's avatar
Jaime Arias committed
223
    """Creates a table with some statistics from a dataframe for a model and experiments"""
Jaime Arias's avatar
Jaime Arias committed
224
225
226
227
228
229
230
231
    rows=[["<b>Experiment</b>", "<b>Time Limit</b>", "<b>Memory</b>", "<b>Unknown Error</b>", "<b>OK</b>", "<b>Faster</b>"]]
    
    df_exp1 = pd.DataFrame({"error": df_errors.loc[model][exp1]})
    df_exp2 = pd.DataFrame({"error": df_errors.loc[model][exp2]})
    df_exp1, df_exp2 = filter_errors(df_exp1, df_exp2)
    
    info1 = get_info(df_exp1)
    info2 = get_info(df_exp2)
232
    
Jaime Arias's avatar
Jaime Arias committed
233
234
235
236
    best1, best2 = get_best_times(df_time, df_errors, model, exp1, exp2)
    
    for (experiment, info, best) in [(exp1, info1, best1), (exp2, info2, best2)]:
        rows.append([experiment, info["time limit"], info["memory"], info["error"], info["OK"], best])
Jaime Arias's avatar
Jaime Arias committed
237
238
        
    return ff.create_table(rows)
239
240


Jaime Arias's avatar
Jaime Arias committed
241
# In[7]:
Jaime Arias's avatar
Jaime Arias committed
242
243


244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import webbrowser

def get_filename(base_path, tool, model, model_instance, formula):
    """Returns the absolute path of the experiment log
    
    Parameters
    ----------
    base_path : string
        Path of the folder where logs are saved
    tool : string
        Tool name
    model : string
        Model name
    model_instance : string
        Name of the model instance
    formula : string
        Identifier of the formula
    
    Returns
    -------
    string
        Absolute path of the log file
    
    """
    information = tool.split('_')
    
    tool_name = information[0]
    tool_configuration = '_'.join(information[:-2])
    nb_nodes = information[-2]
    nb_cores = information[-1]
    
    experiment_folder = os.path.join(base_path, tool_name, tool_configuration, model, model_instance)
    filename = f'{tool_name}_{model_instance}-n{nb_nodes}-th{nb_cores}-f{formula}'
    absolute_path = os.path.join(experiment_folder, filename)
    
    return absolute_path

def open_logs_callback(trace, points, selector):
    """Callback that open the log files when clicking on a point of the figure
    
    Parameters
    ----------
    trace : plotly.graph_objects.Figure
        the figure to attach the callback
    points : plotly.callbacks.Points 
        points of the figure selected
    selector: plotly.callbacks.InputDeviceState 
        Device information 
    """
    inds = points.point_inds
    if (inds):
        index = inds[0]

        formula, error_x, error_y = trace['customdata'][index]
        model_instance = trace['meta']['model']
        model = ''.join(c for c in model_instance if not c.isdigit())
        tools = trace['meta']['tools']
        logs_folder = trace['meta']['folder']

        filename_x = get_filename(logs_folder, tools['x'], model, model_instance, formula)
        filename_y = get_filename(logs_folder, tools['y'], model, model_instance, formula)

        for f in [filename_x, filename_y]:
            webbrowser.open(f'file://{f}.err')
            webbrowser.open(f'file://{f}.out')

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
OPEN_LOGS_CALLBACK_JS = """
function get_filename (base_path, tool, model_instance, formula) {
  const information = tool.split('_');
  const size = information.length;

  const tool_name = information[0];
  const tool_configuration = information.slice(0, size - 2).join('_');
  const nb_nodes = information[size - 2];
  const nb_cores = information[size - 1];

  const model = model_instance.replace(/[0-9]/g, '');

  const experiment_folder = `${base_path}/${tool_name}/${tool_configuration}/${model}/${model_instance}`;
  const filename = `${tool_name}_${model_instance}-n${nb_nodes}-th${nb_cores}-f${formula}`;

  return `${experiment_folder}/${filename}`;
}

const plots = document.getElementsByClassName("plotly-graph-div js-plotly-plot");
const myPlot = plots[0];

myPlot.on('plotly_click', function(data){
    const points = data.points;
    if (points.length != 1) {return ;}
    
    const myPoint = points[0];
    const formula = myPoint.customdata[0];
    const meta = myPoint.data.meta;
    
    const href = window.location.href.split('/');
Jaime Arias's avatar
Jaime Arias committed
340
    const base_path = href.splice(0,href.length-4).join('/');
341
    
Jaime Arias's avatar
Jaime Arias committed
342
343
    const filename_x = get_filename(base_path, meta.tools.x, meta.model, formula);
    const filename_y = get_filename(base_path, meta.tools.y, meta.model, formula);
344
345
346
347
348
349
350
351
352
353
354
    
    console.log('x: ' + filename_x);
    window.open(`${filename_x}.err`);
    window.open(`${filename_x}.out`);
    
    console.log('y: ' + filename_y);
    window.open(`${filename_y}.err`);
    window.open(`${filename_y}.out`);
});
"""

355

Jaime Arias's avatar
Jaime Arias committed
356
# In[8]:
357
358


Jaime Arias's avatar
Jaime Arias committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
def create_figure_explored_states(table_explored_states, model):
    """Creates figure showing the number of explorated states during the verification 
    
    Parameters
    ----------
    table_explored_states : pandas.Dataframe
        Dataframe with the explorated states of each experiment
    model : string
        Model to be analyzed
        
    Returns
    -------
    plotly.graph_objects.Figure
        Scatter figure
    """
    colors={'T': 'green', 'F': 'red'}
    float_formatter = "{:.2E}".format

    table_model = table_explored_states[table_explored_states.property != 'U']
    table_model = table_model[table_model.model == model]

    table_stats = table_model.groupby(['property']).agg(['mean']) 

    fig = go.Figure()
Jaime Arias's avatar
Jaime Arias committed
383
    max_x = 0
Jaime Arias's avatar
Jaime Arias committed
384
385
386
387
388
    for p in table_stats.index:
        data = table_model[table_model.property==p]
        stats = table_stats.loc[p]
        
        x_axis = np.arange(1, data['formula'].count()+1, 1)
Jaime Arias's avatar
Jaime Arias committed
389
        max_x = max(max_x, x_axis[-1]+1)
Jaime Arias's avatar
Jaime Arias committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
        mean = stats['explored_states','mean']
        
        figure = px.scatter(data, 
                            x=x_axis, 
                            y="explored_states",
                            title=model, 
                            color='property',
                            color_discrete_map=colors,
                            symbol_sequence=["circle"])

        line = go.Scatter(x=[x_axis[0], x_axis[-1]], 
                          y=[mean, mean],
                          mode='lines', showlegend=False,                          
                          line=dict(color=colors[p], width=1.5))

        fig.add_trace(figure['data'][0])
        fig.add_trace(line)
        
        fig.add_annotation(x=1, 
                           y=mean,
                           font=dict(color=colors[p]),
                           text=f"mean = {float_formatter(mean)}")

    fig.update_layout(title_text=model, title=LAYOUT_FIGURES['title'], 
                      width = 500, height = 500, margin=dict(r=110))
    
Jaime Arias's avatar
Jaime Arias committed
416
    fig.update_xaxes(title="formula", range=[0, max_x])
Jaime Arias's avatar
Jaime Arias committed
417
418
419
420
421
422
423
424
425
426
427
    fig.update_yaxes(title="# explored states")
    
    fig.update_annotations(dict(
        showarrow=False,
        xanchor="left",
        yanchor="middle",
        xref='paper'))
    
    return fig


Jaime Arias's avatar
Jaime Arias committed
428
# In[9]:
Jaime Arias's avatar
Jaime Arias committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479


def create_log_figure(table, table_errors, model, tool_x, tool_y, show_strategy=True, callback=None):
    """Creates a Scatter figure in logarithmic scale comparing the performance of two tools
    
    Parameters
    ----------
    table : pandas.Dataframe
        Dataframe with the times of each experiment
    table_errors : pandas.Dataframe
        Dataframe with the errors of each experiment
    model : string
        Model to be analyzed
    tool_x : string
        Tool to be compared and plotted on the x-axis
    tool_y : string
        Tool to be compared and plotted on the y-axis
    show_strategy : bool
        Flag to show the stretagy used by the tools
    callback : function
        Function to be called when clicking on a point
        
    Returns
    -------
    plotly.graph_objects.Figure
        Scatter figure
        
    Examples
    --------
    >>> import os
    >>> import pandas as pd
    >>> csv_file = os.path.join("results", "output.csv")
    >>> df = pd.read_csv(csv_file)
    >>> table = df.set_index(['model', 'formula', 'tool'], drop=True).unstack('tool')
    >>> fig = create_log_figure(table['time'], table['error'], 'philo10', 'pmc-sog_otfL_couv99-default_1_8', 'pmc-sog_otfP_couv99-default_1_8')
    """
    try:
        min_value = ZERO
        max_value = TIMEOUT
        
        min_value_log = np.log10(min_value)
        max_value_log = np.log10(max_value)

        table_model = table.loc[model]
        table_errors_model = table_error.loc[model]
        
        full_table_x = pd.concat([table_model[tool_x],table_model['property'], table_errors_model[tool_x]], axis=1)
        full_table_x.columns = ['time', 'property', 'error']

        full_table_y = pd.concat([table_model[tool_y],table_model['property'], table_errors_model[tool_y]], axis=1)
        full_table_y.columns = ['time', 'property', 'error']
Jaime Arias's avatar
Jaime Arias committed
480
481
        
        full_table_x, full_table_y = filter_errors(full_table_x, full_table_y)
Jaime Arias's avatar
Jaime Arias committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

        traces = [
            {"property": 'T', "color":"green"},
            {"property": 'F', "color":"red"},
            {"property": 'U', "color":"black"}
        ]

        figures = []
        for t in traces:
            # filter by verification output
            table_x = full_table_x[full_table_x.property == t['property']]
            table_y = full_table_y[full_table_y.property == t['property']]

            # custom data
            custom_data = list(zip(table_x.index, table_x.error,table_y.error))
            
            # tools
            metainfo = {
                'model': model, 
                'tools': {'x': tool_x, 'y': tool_y},
                'folder': os.path.join(os.path.abspath(os.pardir), "results")
            }

            figures.append(go.Scatter(x=table_x.time,
                                      y=table_y.time,
                                      name=t['property'],
                                      mode='markers',
                                      marker_symbol='circle-open',
                                      marker_color=t['color'],
                                      meta = metainfo,
                                      customdata=custom_data,
                                      hovertemplate =
                                        '<b>Formula # %{customdata[0]}</b><br>' +
                                        '<br><b>Times:</b><br>' +
                                        '<b>x:</b> %{x} s' +
                                        '<br><b>y:</b> %{y} s<br>' +
                                        '<br><b>Errors:</b><br>' +
                                        '<b>x:</b> %{customdata[1]}<br>' +
                                        '<b>y:</b> %{customdata[2]}',
                                        ))    

        # Line
        figures.append(go.Scatter(x=[min_value, max_value], 
                                    y=[min_value, max_value],
                                    mode='lines', showlegend=False,
                                    line=dict(color='black', width=1)))

        # Create figure
        figure = go.FigureWidget(figures)
        figure.update_layout(LAYOUT_FIGURES,
                             title_text=model,
                             hoverlabel=dict(bgcolor="white", align='auto'),
                             legend_title_text='property',
                             xaxis=dict(type='log', autorange=False, range=[min_value_log, max_value_log]),
                             yaxis=dict(type='log', autorange=False, range=[min_value_log, max_value_log]),
                             xaxis_title=get_axis_title(tool_x, show_strategy),
                             yaxis_title=get_axis_title(tool_y, show_strategy))

        # Add event
        if callback is not None:
            for i in range(len(figure.data)):
                figure.data[i].on_click(callback)
    
        return figure
    except Exception as e:
        print("Error when ploting model: {} - tool_x: {} - tool_y: {}".format(model, tool_x, tool_y))
        print(e)


Jaime Arias's avatar
Jaime Arias committed
551
# In[10]:
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622


# Experiment filters

def versus_dfs(experiments):
    """Selects only experiments using DFS strategy"""
    exp1, exp2 = experiments
    strategy_exp1= exp1.split('_')[1]
    strategy_exp2= exp2.split('_')[1]
    
    return strategy_exp1 == 'dfs' or strategy_exp2 == 'dfs'

def versus_sequential(experiments):
    """Selects only experiments run sequentially """
    exp1, exp2 = experiments
    nodes_exp1, threads_exp1 = exp1.split('_')[-2:]
    nodes_exp2, threads_exp2 = exp2.split('_')[-2:]

    return (nodes_exp1 == '1' and nodes_exp2 == '1') and             (threads_exp1 == '1' or threads_exp2 == '1')

def same_tool(experiments, tool):
    """Selects only experiments comparing the same tool"""
    exp1, exp2 = experiments
    tool_exp1= exp1.split('_')[0]
    tool_exp2= exp2.split('_')[0]
    return tool_exp1.startswith(tool) and tool_exp2.startswith(tool)

def same_number_threads(experiments):
    """Selects only experiments comparing the same number of processes and cores"""
    exp1, exp2 = experiments
    nodes_exp1, threads_exp1 = exp1.split('_')[-2:]
    nodes_exp2, threads_exp2 = exp2.split('_')[-2:]
    return (nodes_exp1 == nodes_exp2) and (threads_exp1 == threads_exp2) 

def same_thread_library(experiments):
    """Selects only experiments comparing the same parallelization library"""
    exp1, exp2 = experiments
    library_exp1 = exp1.split('_')[1]
    library_exp2 = exp2.split('_')[1]
    return library_exp1 == library_exp2

def same_strategy(experiments):
    """Selects only experiments comparing the same strategy"""
    exp1, exp2 = experiments
    strategy_exp1 = exp1.split('_')[2]
    strategy_exp2 = exp2.split('_')[2]
    return strategy_exp1 == strategy_exp2

def only_couvreur_strategy(experiments):
    """Selects only experiments comparing couvreur emptiness check algorithm"""
    exp1, exp2 = experiments
    strategy_exp1 = exp1.split('_')[2]
    strategy_exp2 = exp2.split('_')[2]
    return strategy_exp1.startswith('couv99') and strategy_exp2.startswith('couv99')

def compare_threads_library(experiments):
    """Compares parallization libraries used in pmc-sog. 
    
    It selects experiments where the tool is only pmc-sog and the strategy, number of threads, 
    number of processus are the same.
    """
    return same_tool(experiments, 'pmc-sog') and             same_strategy(experiments) and             same_number_threads(experiments) and             not same_thread_library(experiments)

def compare_couvreur_strategies(experiments):
    """Compares couvreurs strategies used in pmc-sog. 
    
    It selects experiments where the tool is only pmc-sog, the strategy is couvreur, and 
    the parallelization library, number of threads, number of processus are the same.
    """
    return only_couvreur_strategy(experiments) and             same_thread_library(experiments) and             same_number_threads(experiments)

623
624
625
626
627
628
629
def same_distributed_number_threads(experiments):
    """Selects only experiments where the multiplication of theirs nodes with cores are the same."""
    exp1, exp2 = experiments
    nodes_exp1, threads_exp1 = exp1.split('_')[-2:]
    nodes_exp2, threads_exp2 = exp2.split('_')[-2:]
    return (int(nodes_exp1) * int(threads_exp1)) == (int(nodes_exp2) * int(threads_exp2))

630
631
632
633
634
635
def compare_tools(experiments):
    """Compares pmc-sog and pnml2lts-mc using the DFS algorithm. 
    
    It selects experiments where the tools are not the same, the exploration algorithm is DFS and 
    the number of processus and cores are the same.
    """
636
    return not (same_tool(experiments, 'pmc-sog') or same_tool(experiments,'pnml2lts-mc')) and             versus_dfs(experiments)
637
638
639
640
641
642
643
644
645

def compare_multithreading(experiments):
    """Compares the sequential and multi-core version of pmc-sog. 
    
    It selects experiments where the tools is pmc-sog, the parallelization library, the emptiness check 
    strategy are the same. Here the number of processus and cores are different.
    """
    return same_tool(experiments, 'pmc-sog') and             same_thread_library(experiments) and             same_strategy(experiments) and             versus_sequential(experiments)

646
647
648
649
650
651
652
653
def against_hybrid(experiments):
    """Selects only experiments comparing with hybrid mode"""
    exp1, exp2 = experiments
    library_exp1 = exp1.split('_')[1]
    library_exp2 = exp2.split('_')[1]
    return (library_exp1 == 'otf') or (library_exp2 == 'otf')


654
655
def compare_distributed(experiments):
    """Compares the hybrid version of pmc-sog"""
656
    return same_tool(experiments, 'pmc-sog') and         same_strategy(experiments) and         same_distributed_number_threads(experiments) and         against_hybrid(experiments)
657

Jaime Arias's avatar
Jaime Arias committed
658
659
660
def compare_others(experiments):
    return (not compare_threads_library(experiments)) and         (not compare_couvreur_strategies(experiments)) and         (not compare_tools(experiments)) and         (not compare_multithreading(experiments)) and         (not compare_distributed(experiments))

661
662
663
664
665
# Plots to be created
plots = {
    'compare_thread_library': compare_threads_library,
    'compare_couvreur_algorithm': compare_couvreur_strategies,
    'compare_tools': compare_tools,
666
    'compare_multicore': compare_multithreading,
Jaime Arias's avatar
Jaime Arias committed
667
668
    'compare_distributed': compare_distributed,
    'others' : compare_others
669
670
671
672
673
}


# # Load Data

Jaime Arias's avatar
Jaime Arias committed
674
# In[11]:
675
676
677
678
679
680
681
682


# Root folder
PROJECT_FOLDER = os.path.abspath(os.pardir)

# csv file with the output
csv_file = os.path.join(PROJECT_FOLDER, "results", "output.csv")

Jaime Arias's avatar
Jaime Arias committed
683
684
685
# formulas folder
FORMULAS_FOLDER = os.path.join(PROJECT_FOLDER, "formulas")

686
687
688
689
690
# Output folder
OUTPUT_FOLDER = os.path.join(PROJECT_FOLDER,"results", "figures")
create_folder(OUTPUT_FOLDER)


Jaime Arias's avatar
Jaime Arias committed
691
# In[12]:
692
693
694
695
696
697
698
699
700


# read data
df = pd.read_csv(csv_file)

# merge the information related to the experiment (# nodes, # threads, strategy) to the tool column
df['tool'] = df[['tool', 'strategy', 'num_nodes', 'num_threads']].astype(str).apply('_'.join, axis=1)
df = df.drop(columns=['strategy', 'num_nodes', 'num_threads'])

Jaime Arias's avatar
Jaime Arias committed
701
# FIX: filtering philo20 experiments because there is a problem with the generated formulas
Jaime Arias's avatar
Jaime Arias committed
702
703
704
705
706
707
708
df = df[df.model != "philo20"]
df


# In[13]:


Jaime Arias's avatar
Jaime Arias committed
709
710
# filtering runtime errors
df = df[(df.error != "SEGMENTATION FAULT") &         (df.error != "ABORTED") &         (df.error != "TERMINATE") &         (df.error != "MDD")]
Jaime Arias's avatar
Jaime Arias committed
711
712
713
714
715

df = df.reset_index(drop=True)
df


Jaime Arias's avatar
Jaime Arias committed
716
# In[14]:
Jaime Arias's avatar
Jaime Arias committed
717
718


719
# ground truth for properties
Jaime Arias's avatar
Jaime Arias committed
720
frames = []
721

Jaime Arias's avatar
Jaime Arias committed
722
723
724
725
726
727
728
729
730
731
732
733
734
formula_results = glob.glob(os.path.join(FORMULAS_FOLDER, "**/formula_results"), recursive=True)
for f in formula_results:
    model, out_file = f.split('/')[-2:]
    
    tmp_df = pd.read_csv(f, sep=";", header=None, names=["formula", "property"])
    tmp_df["model"] = model
    frames.append(tmp_df)
    
p_df = pd.concat(frames)
p_df = p_df.reindex(columns=["model", "formula", "property"])
p_df = p_df[p_df['model'].isin(df.model.unique())]
p_df['property'] = p_df['property'].replace([True, False], ["T", "F"])
p_df = p_df.set_index(["model", "formula"])
Jaime Arias's avatar
Jaime Arias committed
735
p_df.sort_index(inplace=True)
736

Jaime Arias's avatar
Jaime Arias committed
737
p_df
738
739


Jaime Arias's avatar
Jaime Arias committed
740
# In[15]:
741
742
743
744


# table with times, verification output and error for each experiment
table = df.set_index(['model', 'formula', 'tool'], drop=True).unstack('tool')
Jaime Arias's avatar
Jaime Arias committed
745
table
746
747
748
749


# # Preprocessing of data

Jaime Arias's avatar
Jaime Arias committed
750
# In[16]:
751
752
753
754
755
756
757
758
759
760
761
762
763
764


# table with times for each experiment
table_time = table['time'].copy()

# replace non finished experiments with a dummy value, e.g. timeout
table_time.fillna(TIMEOUT, inplace=True)

# replace 0.00 time for 10^(-5), we cannot plot log(0)
table_time.replace(0.0, ZERO, inplace=True)

# add verification output to the table
table_time = pd.concat([table_time, p_df], axis=1)

Jaime Arias's avatar
Jaime Arias committed
765
table_time
766
767


Jaime Arias's avatar
Jaime Arias committed
768
# In[17]:
769
770
771
772
773
774
775
776
777
778
779
780
781
782


# table with verification output for each experiment
table_property = table['property'].copy()

# replace non finished experiments with a dummy value
table_property.fillna('U', inplace=True)

# add ground truth to the table
table_property = pd.concat([table_property, p_df], axis=1)

table_property.head()


Jaime Arias's avatar
Jaime Arias committed
783
# In[18]:
784
785
786
787
788
789
790
791


# table with error for each experiment
table_error = table['error'].copy()

table_error.head()


Jaime Arias's avatar
Jaime Arias committed
792
# In[19]:
Jaime Arias's avatar
Jaime Arias committed
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809


# table with explored states for each experiment using ltsmin
table_explored_states = table.copy()
table_explored_states = table_explored_states['explored_states']
table_explored_states = table_explored_states[['pnml2lts-mc_dfs_1_16']]
table_explored_states = table_explored_states.rename(columns={"pnml2lts-mc_dfs_1_16": "explored_states"})

# add verification output to the table
table_explored_states = pd.concat([table_explored_states, p_df], axis=1)

# reshape
table_explored_states = table_explored_states.reset_index()

table_explored_states.head()


Jaime Arias's avatar
Jaime Arias committed
810
# In[20]:
Jaime Arias's avatar
Jaime Arias committed
811
812
813
814
815
816
817
818
819


# calculate the stats of the number of explored states

table_explored_states_stats = table_explored_states.groupby(['model', 'property']).agg(['mean', 'min', 'max'])
table_explored_states_stats = table_explored_states_stats['explored_states']
table_explored_states_stats.head()


820
821
# # Examples

Jaime Arias's avatar
Jaime Arias committed
822
# In[25]:
823
824


Jaime Arias's avatar
Jaime Arias committed
825
create_figure_explored_states(table_explored_states, 'robot50')
826
827


Jaime Arias's avatar
Jaime Arias committed
828
# In[24]:
Jaime Arias's avatar
Jaime Arias committed
829
830


Jaime Arias's avatar
Jaime Arias committed
831
create_figure(df, "robot50")
832
833


Jaime Arias's avatar
Jaime Arias committed
834
# In[23]:
Jaime Arias's avatar
Jaime Arias committed
835

Jaime Arias's avatar
Jaime Arias committed
836

Jaime Arias's avatar
Jaime Arias committed
837
log_figure = create_log_figure(table_time, table_error, "robot50", "pmc-sog_otf_couv99-default_2_16", "pnml2lts-mc_dfs_1_16", True, open_logs_callback)
Jaime Arias's avatar
Jaime Arias committed
838
log_figure
Jaime Arias's avatar
Jaime Arias committed
839

Jaime Arias's avatar
Jaime Arias committed
840

Jaime Arias's avatar
Jaime Arias committed
841
# In[26]:
Jaime Arias's avatar
Jaime Arias committed
842
843


Jaime Arias's avatar
Jaime Arias committed
844
table = get_table(table_time, table_error, "robot50", "pmc-sog_otf_couv99-default_2_16", "pnml2lts-mc_dfs_1_16")
Jaime Arias's avatar
Jaime Arias committed
845
table
846
847
848
849


# # Generate Figures

Jaime Arias's avatar
Jaime Arias committed
850
# In[27]:
851
852
853
854
855
856
857
858
859


# models
models = df.model.unique()

# tools 
tools = df.tool.unique()


Jaime Arias's avatar
Jaime Arias committed
860
# In[ ]:
Jaime Arias's avatar
Jaime Arias committed
861
862
863
864
865
866
867
868
869
870
871
872


# create all the figures of explored states

folder = os.path.join(OUTPUT_FOLDER, 'explored-states')
create_folder(folder)

for model in models:
    try:
        fig = create_figure_explored_states(table_explored_states, model)
        
        # save figures in html and pdf
873
        fig.write_html(os.path.join(folder, model + '.html'), include_plotlyjs='cdn')
Jaime Arias's avatar
Jaime Arias committed
874
875
876
877
878
        fig.write_image(os.path.join(folder, model + '.pdf'))
    except KeyError:
        print("Error: {} was not plotted".format(model))


Jaime Arias's avatar
Jaime Arias committed
879
# In[ ]:
880
881
882
883
884
885
886
887
888
889
890
891


# create all the figures formula vs time

folder = os.path.join(OUTPUT_FOLDER, 'time-plots')
create_folder(folder)

for model in models:
    try:
        fig = create_figure(df, model)
        
        # save figures in html and pdf
Jaime Arias's avatar
Jaime Arias committed
892
        fig.write_html(os.path.join(folder, model + '.html'), include_plotlyjs='cdn')
893
894
895
896
897
        fig.write_image(os.path.join(folder, model + '.pdf'))
    except KeyError:
        print("Error: {} was not plotted".format(model))


Jaime Arias's avatar
Jaime Arias committed
898
# In[ ]:
899
900
901
902


# create all the log figures

Jaime Arias's avatar
Jaime Arias committed
903
tools_pairs = [sorted(t) for t in (combinations(tools, 2))]
904
905
906
907
908
909
910
911
912
913
914
915

for plot, filter_method in plots.items():
    axes = list(filter(filter_method, tools_pairs))
    
    for model in models:
        folder = os.path.join(OUTPUT_FOLDER, plot, model)
        create_folder(folder)
        
        for axe in axes:
            try:
                show_strategy = plot == 'compare_couvreur_algorithm'
                fig = create_log_figure(table_time, table_error, model, axe[0], axe[1], show_strategy)
Jaime Arias's avatar
Jaime Arias committed
916
                table = get_table(table_time, table_error, model, axe[0], axe[1])
917
918
919
                
                # save figures in html and pdf
                figure_name = os.path.join(folder, '{}-{}-VS-{}-log'.format(model, axe[0], axe[1]))
Jaime Arias's avatar
Jaime Arias committed
920
921
922
923
924
                
                with open(figure_name + '.html', 'w') as f:
                    f.write(fig.to_html(full_html=False, include_plotlyjs='cdn', post_script=OPEN_LOGS_CALLBACK_JS))
                    f.write(table.to_html(full_html=False, include_plotlyjs='cdn', post_script=OPEN_LOGS_CALLBACK_JS))
                    
925
926
927
928
929
930
931
932
933
934
                fig.write_image(figure_name + '.pdf')
            except KeyError:
                print("Error: {} was not plotted".format(model))


# In[ ]: