README.md 4.63 KB
Newer Older
Jaime Arias's avatar
Jaime Arias committed
1
# Hybrid Parallel Model Checking of Hybrid LTL on Hybrid State Space Representation
Jaime Arias's avatar
Jaime Arias committed
2
3
4
5
6
7
8

This repository hosts the results for the paper.

The experimental results were obtained on [Magi
cluster](http://magi.univ-paris13.fr/wiki/) of [University Sorbonne Paris
Nord](https://univ-paris13.fr/). We used the partition `COMPUTE` which has 40
processors (two Intel Xeon E5-2650 v3 at 2.30GHz) connected by an InfiniBand
Jaime Arias's avatar
Jaime Arias committed
9
network, and 64GB of RAM. A total of 4 models from the [Model Checking
Jaime Arias's avatar
Jaime Arias committed
10
11
12
13
Contest](https://mcc.lip6.fr/models.php) were used in our experiments:
*[Philosophers](models/philo/description.pdf)* (`philo`),
*[RobotManipulation](models/robot/description.pdf)* (`robot`),
*[SwimmingPool](models/spool/description.pdf)*
Jaime Arias's avatar
Jaime Arias committed
14
(`spool`), and *[CircularTrains]((models/train/description.pdf))* (`train`).
Jaime Arias's avatar
Jaime Arias committed
15
16
17
18


## Clone this repository:
```
Jaime Arias's avatar
Jaime Arias committed
19
git clone https://depot.lipn.univ-paris13.fr/PMC-SOG/experiments/hybrid.git && cd hybrid
Jaime Arias's avatar
Jaime Arias committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
```

## Folder Structure

```
.
├── formulas                        # folder containing the LTL\X formulas
├── models                          # folder containing the models
├── results
│   ├── pmc-sog.zip                 # results (logs) related to our model-checker
│   └── pnml2lts-mc.zip             # results (logs) related to the ltsmin model-checker
├── run-experiment.py               # script that run a experiment on the local machine
├── scripts
│   ├── formula-generator.sh        # script that generates N random LTL\X formulas
│   ├── generate-csv.py             # script that generates a csv file with the results from the logs
│   └── plot-results.ipynb          # Python notebook that allows to generate the figures and interact with the results
│   └── sbatch_generator.py         # script that generates the sbatch files to run the experiments on Magi cluster
└── tools
    ├── pmc-sog                     # binary of our model-checker
    └── pnml2lts-mc                 # binary of the ltsmin model-checker
```

## Run experiments

In the following we provide the steps to run the experiments. We tested this
on Ubuntu 18.04.4 LTS.

### Install dependencies

  - `sudo apt install git python3`
  - `pmc-sog`: Please read the [installation notes](https://depot.lipn.univ-paris13.fr/PMC-SOG/mc-sog).
  - `pnml2lts-mc`: Download from [here](http://github.com/utwente-fmt/ltsmin/releases/download/v3.0.2/ltsmin-v3.0.2-linux.tgz).


The binaries `pmc-sog` and `pnml2lts-mc` must be copied in the `tools` folder.

### Local Run

To run the experiments on a local machine, the script `run-experiment.py` can
be used.

`./run-experiment.py --processes 1 --threads 8 --tool pmc-sog --model-name=philo --model-instance=philo10 --formula=1 --tool-parameter parallelisation=otfP --tool-parameter strategy="Cou99 (poprem)"`

```
./run-experiment.py -h
usage: run-experiment.py [-h] --processes PROCESSES --threads THREADS --tool
                         {pmc-sog,pnml2lts-mc} --model-name MODEL_NAME
                         --model-instance MODEL_INSTANCE --formula FORMULA
                         [--tool-parameter PARAMETERS]

Run an experiment on the local machine

optional arguments:
  -h, --help            show this help message and exit
  --processes PROCESSES
                        number of process
  --threads THREADS     number of threads
  --tool {pmc-sog,pnml2lts-mc}
                        model-checker tool
  --model-name MODEL_NAME
                        Name of the model (e.g. philo)
  --model-instance MODEL_INSTANCE
                        Instance of the model (e.g. philo10)
  --formula FORMULA     Number of the property to verify
  --tool-parameter PARAMETERS
                        Parameter of the tool
```

### Cluster (slurm) Run

- Run the script that generates slurm batch:
  - `./scripts/sbatch_generator.py`
- Execute the experiment with `sbtach`:
  - `sbatch slurm/slurm/pmc-sog/pmc-sog_otfP_default/philo/n1-th8.sbatch`

## Generate Figures

In the following we provide the steps to generate the figures. We tested this
on Ubuntu 18.04.4 LTS.

### Install dependencies
  - `sudo apt install git unzip wget libfuse2 libnss3 libgdk-pixbuf2.0-0 libgtk-3-0 libx11-xcb1 libxss1 libasound2 python3 python3-pip`
  - `pip3 install --user pandas plotly psutil requests`
  - `wget https://github.com/plotly/orca/releases/download/v1.3.1/orca-1.3.1.AppImage`
  - `chmod +x orca-1.3.1.AppImage`
  - `mv orca-1.3.1.AppImage /usr/local/bin/orca`

### Decompress results
  - `cd results`
  - `unzip -q pmc-sog.zip`
  - `unzip -q pnml2lts-mc.zip`
  - `cd ..`

### Generate Figures
  - `cd scripts`
  - `python3 generate-csv.py`
  - `python3 plot-results.py`

## Authors

## Abstract