Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
Menu
Open sidebar
PMC-SOG
experiments
hybrid
Commits
3da23b16
Commit
3da23b16
authored
May 28, 2020
by
Jaime Arias
Browse files
fix notebook
parent
121075cd
Changes
2
Hide whitespace changes
Inline
Side-by-side
scripts/plot-results.ipynb
View file @
3da23b16
%% Cell type:code id: tags:
```
python
import
os
import
pandas
as
pd
import
numpy
as
np
import
plotly.io
as
pio
import
plotly.express
as
px
import
plotly.graph_objs
as
go
from
itertools
import
combinations
from
plotly.subplots
import
make_subplots
# render figures in notebook
pio
.
renderers
.
default
=
"notebook_connected"
# templates figures
px
.
defaults
.
template
=
"simple_white"
pio
.
templates
.
default
=
"simple_white"
# layout for all figures
LAYOUT_FIGURES
=
dict
(
autosize
=
False
,
width
=
500
,
height
=
500
,
xaxis
=
dict
(
constrain
=
"domain"
,
mirror
=
True
,
showexponent
=
"all"
,
exponentformat
=
"power"
),
yaxis
=
dict
(
scaleanchor
=
"x"
,
scaleratio
=
1
,
mirror
=
True
,
showexponent
=
"all"
,
exponentformat
=
"power"
),
title
=
dict
(
y
=
0.9
,
x
=
0.5
,
xanchor
=
'center'
,
yanchor
=
'top'
)
)
```
%% Cell type:markdown id: tags:
# Auxiliary Functions
%% Cell type:code id: tags:
```
python
def
create_folder
(
path
):
"""Creates a folder if it does not exist
Parameters
----------
path : str
Path of the new folder
Examples
--------
>>> create_folder('./results')
"""
if
not
os
.
path
.
exists
(
path
):
os
.
makedirs
(
path
)
```
%% Cell type:code id: tags:
```
python
def
create_figure
(
df
,
model
):
"""Creates a scatter figure showing the time taken by each tool to verify each property of a model
Parameters
----------
df : pandas.Dataframe
Dataframe containing the results of the experiments
model : string
model to be plotted
Returns
-------
plotly.graph_objects.Figure
Scatter figure
Examples
--------
>>> import os
>>> import pandas as pd
>>> csv_file = os.path.join("results", "output.csv")
>>> df = pd.read_csv(csv_file)
>>> fig = create_figure(df, 'philo10')
"""
model_df
=
df
[
df
.
model
==
model
]
figure
=
px
.
scatter
(
model_df
,
x
=
"formula"
,
y
=
"time"
,
title
=
model
,
color
=
"tool"
,
symbol_sequence
=
[
'x'
])
figure
.
update_layout
(
yaxis_title
=
"time (s)"
,
title
=
LAYOUT_FIGURES
[
'title'
])
return
figure
```
%% Cell type:code id: tags:
```
python
def
get_axis_title
(
experiment
,
show_strategy
=
True
):
"""Get the axis title of a figure depending on the experiment being plotted
Parameters
----------
experiment : str
String with the experiment information
show_strategy : bool, optional
Flag to show the information related to the strategy used by the tool
Returns
-------
str
axis title
Examples
--------
>>> get_axis_title('pmc-sog_otfL_couv99-default_1_1', True)
pmc-sog (Lace, strategy: couv99-default, # cores: 1)
"""
information
=
experiment
.
split
(
'_'
)
tool_name
=
information
[
0
]
info
=
[]
library_dic
=
{
'otfL'
:
'Lace'
,
'otfP'
:
'Pthreads'
,
'otfC'
:
'Cthreads'
,
'otf'
:
'Hybrid'
}
if
(
len
(
information
)
==
5
):
info
.
append
(
library_dic
[
information
[
1
]])
if
(
show_strategy
):
info
.
append
(
'strategy: {}'
.
format
(
information
[
-
3
]))
nb_nodes
=
int
(
information
[
-
2
])
if
(
nb_nodes
>
1
):
info
.
append
(
'# nodes: {}'
.
format
(
nb_nodes
))
info
.
append
(
'# cores: {}'
.
format
(
information
[
-
1
]))
title
=
'{} ({})'
.
format
(
tool_name
,
', '
.
join
(
info
))
return
title
```
%% Cell type:code id: tags:
```
python
def
create_log_figure
(
table
,
table_errors
,
model
,
tool_x
,
tool_y
,
show_strategy
=
True
,
callback
=
None
):
"""Creates a Scatter figure in logarithmic scale comparing the performance of two tools
Parameters
----------
table : pandas.Dataframe
Dataframe with the times of each experiment
table_errors : pandas.Dataframe
Dataframe with the errors of each experiment
model : string
Model to be analyzed
tool_x : string
Tool to be compared and plotted on the x-axis
tool_y : string
Tool to be compared and plotted on the y-axis
show_strategy : bool
Flag to show the stretagy used by the tools
callback : function
Function to be called when clicking on a point
Returns
-------
plotly.graph_objects.Figure
Scatter figure
Examples
--------
>>> import os
>>> import pandas as pd
>>> csv_file = os.path.join("results", "output.csv")
>>> df = pd.read_csv(csv_file)
>>> table = df.set_index(['model', 'formula', 'tool'], drop=True).unstack('tool')
>>> fig = create_log_figure(table['time'], table['error'], 'philo10', 'pmc-sog_otfL_couv99-default_1_8', 'pmc-sog_otfP_couv99-default_1_8')
"""
try
:
min_values
=
table
.
loc
[
model
].
min
()
max_values
=
table
.
loc
[
model
].
max
()
min_value
=
min
(
min_values
[
tool_x
],
min_values
[
tool_y
])
/
2.
min_value_log
=
np
.
log10
(
min_value
)
max_value
=
max
(
max_values
[
tool_x
],
max_values
[
tool_y
])
max_value_log
=
np
.
log10
(
max_value
)
table_model
=
table
.
loc
[
model
]
table_errors_model
=
table_error
.
loc
[
model
]
full_table_x
=
pd
.
concat
([
table_model
[
tool_x
],
table_model
[
'property'
],
table_errors_model
[
tool_x
]],
axis
=
1
)
full_table_x
.
columns
=
[
'time'
,
'property'
,
'error'
]
full_table_y
=
pd
.
concat
([
table_model
[
tool_y
],
table_model
[
'property'
],
table_errors_model
[
tool_y
]],
axis
=
1
)
full_table_y
.
columns
=
[
'time'
,
'property'
,
'error'
]
traces
=
[
{
"property"
:
'T'
,
"color"
:
"green"
},
{
"property"
:
'F'
,
"color"
:
"red"
},
{
"property"
:
'U'
,
"color"
:
"black"
}
]
figures
=
[]
for
t
in
traces
:
# filter by verification output
table_x
=
full_table_x
[
full_table_x
.
property
==
t
[
'property'
]]
table_y
=
full_table_y
[
full_table_y
.
property
==
t
[
'property'
]]
# custom data
custom_data
=
list
(
zip
(
table_x
.
index
,
table_x
.
error
,
table_y
.
error
))
# tools
metainfo
=
{
'model'
:
model
,
'tools'
:
{
'x'
:
tool_x
,
'y'
:
tool_y
},
'folder'
:
os
.
path
.
join
(
os
.
path
.
abspath
(
os
.
pardir
),
"results"
)
}
figures
.
append
(
go
.
Scatter
(
x
=
table_x
.
time
,
y
=
table_y
.
time
,
name
=
t
[
'property'
],
mode
=
'markers'
,
marker_symbol
=
'circle-open'
,
marker_color
=
t
[
'color'
],
meta
=
metainfo
,
customdata
=
custom_data
,
hovertemplate
=
'<b>Formula # %{customdata[0]}</b><br>'
+
'<br><b>Times:</b><br>'
+
'<b>x:</b> %{x} s'
+
'<br><b>y:</b> %{y} s<br>'
+
'<br><b>Errors:</b><br>'
+
'<b>x:</b> %{customdata[1]}<br>'
+
'<b>y:</b> %{customdata[2]}'
,
))
# Line
figures
.
append
(
go
.
Scatter
(
x
=
[
min_value
,
max_value
],
y
=
[
min_value
,
max_value
],
mode
=
'lines'
,
showlegend
=
False
,
line
=
dict
(
color
=
'black'
,
width
=
1
)))
# Create figure
figure
=
go
.
FigureWidget
(
figures
)
figure
.
update_layout
(
LAYOUT_FIGURES
,
title_text
=
model
,
hoverlabel
=
dict
(
bgcolor
=
"white"
,
align
=
'auto'
),
legend_title_text
=
'property'
,
xaxis
=
dict
(
type
=
'log'
,
autorange
=
False
,
range
=
[
min_value_log
,
max_value_log
]),
yaxis
=
dict
(
type
=
'log'
,
autorange
=
False
,
range
=
[
min_value_log
,
max_value_log
]),
xaxis_title
=
get_axis_title
(
tool_x
,
show_strategy
),
yaxis_title
=
get_axis_title
(
tool_y
,
show_strategy
))
# Add event
if
callback
is
not
None
:
for
i
in
range
(
len
(
figure
.
data
)):
figure
.
data
[
i
].
on_click
(
callback
)
return
figure
except
Exception
as
e
:
print
(
"Error when ploting model: {} - tool_x: {} - tool_y: {}"
.
format
(
model
,
tool_x
,
tool_y
))
print
(
e
)
```
%% Cell type:code id: tags:
```
python
import
webbrowser
def
get_filename
(
base_path
,
tool
,
model
,
model_instance
,
formula
):
"""Returns the absolute path of the experiment log
Parameters
----------
base_path : string
Path of the folder where logs are saved
tool : string
Tool name
model : string
Model name
model_instance : string
Name of the model instance
formula : string
Identifier of the formula
Returns
-------
string
Absolute path of the log file
"""
information
=
tool
.
split
(
'_'
)
tool_name
=
information
[
0
]
tool_configuration
=
'_'
.
join
(
information
[:
-
2
])
nb_nodes
=
information
[
-
2
]
nb_cores
=
information
[
-
1
]
experiment_folder
=
os
.
path
.
join
(
base_path
,
tool_name
,
tool_configuration
,
model
,
model_instance
)
filename
=
f
'
{
tool_name
}
_
{
model_instance
}
-n
{
nb_nodes
}
-th
{
nb_cores
}
-f
{
formula
}
'
absolute_path
=
os
.
path
.
join
(
experiment_folder
,
filename
)
return
absolute_path
def
open_logs_callback
(
trace
,
points
,
selector
):
"""Callback that open the log files when clicking on a point of the figure
Parameters
----------
trace : plotly.graph_objects.Figure
the figure to attach the callback
points : plotly.callbacks.Points
points of the figure selected
selector: plotly.callbacks.InputDeviceState
Device information
"""
inds
=
points
.
point_inds
if
(
inds
):
index
=
inds
[
0
]
formula
,
error_x
,
error_y
=
trace
[
'customdata'
][
index
]
model_instance
=
trace
[
'meta'
][
'model'
]
model
=
''
.
join
(
c
for
c
in
model_instance
if
not
c
.
isdigit
())
tools
=
trace
[
'meta'
][
'tools'
]
logs_folder
=
trace
[
'meta'
][
'folder'
]
filename_x
=
get_filename
(
logs_folder
,
tools
[
'x'
],
model
,
model_instance
,
formula
)
filename_y
=
get_filename
(
logs_folder
,
tools
[
'y'
],
model
,
model_instance
,
formula
)
for
f
in
[
filename_x
,
filename_y
]:
webbrowser
.
open
(
f
'file://
{
f
}
.err'
)
webbrowser
.
open
(
f
'file://
{
f
}
.out'
)
OPEN_LOGS_CALLBACK_JS
=
"""
function get_filename (base_path, tool, model_instance, formula) {
const information = tool.split('_');
const size = information.length;
const tool_name = information[0];
const tool_configuration = information.slice(0, size - 2).join('_');
const nb_nodes = information[size - 2];
const nb_cores = information[size - 1];
const model = model_instance.replace(/[0-9]/g, '');
const experiment_folder = `${base_path}/${tool_name}/${tool_configuration}/${model}/${model_instance}`;
const filename = `${tool_name}_${model_instance}-n${nb_nodes}-th${nb_cores}-f${formula}`;
return `${experiment_folder}/${filename}`;
}
const plots = document.getElementsByClassName("plotly-graph-div js-plotly-plot");
const myPlot = plots[0];
myPlot.on('plotly_click', function(data){
const points = data.points;
if (points.length != 1) {return ;}
const myPoint = points[0];
const formula = myPoint.customdata[0];
const meta = myPoint.data.meta;
const href = window.location.href.split('/');
const base_path = href.splice(0,href.length-2).join('/');
const results_path = `${base_path}/results`;
const filename_x = get_filename(results_path, meta.tools.x, meta.model, formula);
const filename_y = get_filename(results_path, meta.tools.y, meta.model, formula);
console.log('x: ' + filename_x);
window.open(`${filename_x}.err`);
window.open(`${filename_x}.out`);
console.log('y: ' + filename_y);
window.open(`${filename_y}.err`);
window.open(`${filename_y}.out`);
});
"""
```
%% Cell type:code id: tags:
```
python
def
create_figure_explored_states
(
table_explored_states
,
model
):
"""Creates figure showing the number of explorated states during the verification
Parameters
----------
table_explored_states : pandas.Dataframe
Dataframe with the explorated states of each experiment
model : string
Model to be analyzed
Returns
-------
plotly.graph_objects.Figure
Scatter figure
"""
colors
=
{
'T'
:
'green'
,
'F'
:
'red'
}
float_formatter
=
"{:.2E}"
.
format
table_model
=
table_explored_states
[
table_explored_states
.
property
!=
'U'
]
table_model
=
table_model
[
table_model
.
model
==
model
]
table_stats
=
table_model
.
groupby
([
'property'
]).
agg
([
'mean'
])
fig
=
go
.
Figure
()
for
p
in
table_stats
.
index
:
data
=
table_model
[
table_model
.
property
==
p
]
stats
=
table_stats
.
loc
[
p
]
x_axis
=
np
.
arange
(
1
,
data
[
'formula'
].
count
()
+
1
,
1
)
mean
=
stats
[
'explored_states'
,
'mean'
]
figure
=
px
.
scatter
(
data
,
x
=
x_axis
,
y
=
"explored_states"
,
title
=
model
,
color
=
'property'
,
color_discrete_map
=
colors
,
symbol_sequence
=
[
"circle"
])
line
=
go
.
Scatter
(
x
=
[
x_axis
[
0
],
x_axis
[
-
1
]],
y
=
[
mean
,
mean
],
mode
=
'lines'
,
showlegend
=
False
,
line
=
dict
(
color
=
colors
[
p
],
width
=
1.5
))
fig
.
add_trace
(
figure
[
'data'
][
0
])
fig
.
add_trace
(
line
)
fig
.
add_annotation
(
x
=
1
,
y
=
mean
,
font
=
dict
(
color
=
colors
[
p
]),
text
=
f
"mean =
{
float_formatter
(
mean
)
}
"
)
fig
.
update_layout
(
title_text
=
model
,
title
=
LAYOUT_FIGURES
[
'title'
],
width
=
500
,
height
=
500
,
margin
=
dict
(
r
=
110
))
fig
.
update_xaxes
(
title
=
"formula"
,
range
=
[
x_axis
[
0
]
-
1
,
x_axis
[
-
1
]
+
1
])
fig
.
update_yaxes
(
title
=
"# explored states"
)
fig
.
update_annotations
(
dict
(
showarrow
=
False
,
xanchor
=
"left"
,
yanchor
=
"middle"
,
xref
=
'paper'
))
return
fig
```
%% Cell type:code id: tags:
```
python
# Experiment filters
def
versus_dfs
(
experiments
):
"""Selects only experiments using DFS strategy"""
exp1
,
exp2
=
experiments
strategy_exp1
=
exp1
.
split
(
'_'
)[
1
]
strategy_exp2
=
exp2
.
split
(
'_'
)[
1
]
return
strategy_exp1
==
'dfs'
or
strategy_exp2
==
'dfs'
def
versus_sequential
(
experiments
):
"""Selects only experiments run sequentially """
exp1
,
exp2
=
experiments
nodes_exp1
,
threads_exp1
=
exp1
.
split
(
'_'
)[
-
2
:]
nodes_exp2
,
threads_exp2
=
exp2
.
split
(
'_'
)[
-
2
:]
return
(
nodes_exp1
==
'1'
and
nodes_exp2
==
'1'
)
and
\
(
threads_exp1
==
'1'
or
threads_exp2
==
'1'
)
def
same_tool
(
experiments
,
tool
):
"""Selects only experiments comparing the same tool"""
exp1
,
exp2
=
experiments
tool_exp1
=
exp1
.
split
(
'_'
)[
0
]
tool_exp2
=
exp2
.
split
(
'_'
)[
0
]
return
tool_exp1
.
startswith
(
tool
)
and
tool_exp2
.
startswith
(
tool
)
def
same_number_threads
(
experiments
):
"""Selects only experiments comparing the same number of processes and cores"""
exp1
,
exp2
=
experiments
nodes_exp1
,
threads_exp1
=
exp1
.
split
(
'_'
)[
-
2
:]
nodes_exp2
,
threads_exp2
=
exp2
.
split
(
'_'
)[
-
2
:]
return
(
nodes_exp1
==
nodes_exp2
)
and
(
threads_exp1
==
threads_exp2
)
def
same_thread_library
(
experiments
):
"""Selects only experiments comparing the same parallelization library"""
exp1
,
exp2
=
experiments
library_exp1
=
exp1
.
split
(
'_'
)[
1
]
library_exp2
=
exp2
.
split
(
'_'
)[
1
]
return
library_exp1
==
library_exp2
def
same_strategy
(
experiments
):
"""Selects only experiments comparing the same strategy"""
exp1
,
exp2
=
experiments
strategy_exp1
=
exp1
.
split
(
'_'
)[
2
]
strategy_exp2
=
exp2
.
split
(
'_'
)[
2
]
return
strategy_exp1
==
strategy_exp2
def
only_couvreur_strategy
(
experiments
):
"""Selects only experiments comparing couvreur emptiness check algorithm"""
exp1
,
exp2
=
experiments
strategy_exp1
=
exp1
.
split
(
'_'
)[
2
]
strategy_exp2
=
exp2
.
split
(
'_'
)[
2
]
return
strategy_exp1
.
startswith
(
'couv99'
)
and
strategy_exp2
.
startswith
(
'couv99'
)
def
compare_threads_library
(
experiments
):
"""Compares parallization libraries used in pmc-sog.
It selects experiments where the tool is only pmc-sog and the strategy, number of threads,
number of processus are the same.
"""
return
same_tool
(
experiments
,
'pmc-sog'
)
and
\
same_strategy
(
experiments
)
and
\
same_number_threads
(
experiments
)
and
\
not
same_thread_library
(
experiments
)
def
compare_couvreur_strategies
(
experiments
):
"""Compares couvreurs strategies used in pmc-sog.
It selects experiments where the tool is only pmc-sog, the strategy is couvreur, and
the parallelization library, number of threads, number of processus are the same.
"""
return
only_couvreur_strategy
(
experiments
)
and
\
same_thread_library
(
experiments
)
and
\
same_number_threads
(
experiments
)
def
same_distributed_number_threads
(
experiments
):
"""Selects only experiments where the multiplication of theirs nodes with cores are the same."""
exp1
,
exp2
=
experiments
nodes_exp1
,
threads_exp1
=
exp1
.
split
(
'_'
)[
-
2
:]
nodes_exp2
,
threads_exp2
=
exp2
.
split
(
'_'
)[
-
2
:]
return
(
int
(
nodes_exp1
)
*
int
(
threads_exp1
))
==
(
int
(
nodes_exp2
)
*
int
(
threads_exp2
))
def
compare_tools
(
experiments
):
"""Compares pmc-sog and pnml2lts-mc using the DFS algorithm.
It selects experiments where the tools are not the same, the exploration algorithm is DFS and
the number of processus and cores are the same.
"""
return
not
(
same_tool
(
experiments
,
'pmc-sog'
)
or
same_tool
(
experiments
,
'pnml2lts-mc'
))
and
\
versus_dfs
(
experiments
)
def
compare_multithreading
(
experiments
):
"""Compares the sequential and multi-core version of pmc-sog.
It selects experiments where the tools is pmc-sog, the parallelization library, the emptiness check
strategy are the same. Here the number of processus and cores are different.
"""
return
same_tool
(
experiments
,
'pmc-sog'
)
and
\
same_thread_library
(
experiments
)
and
\
same_strategy
(
experiments
)
and
\
versus_sequential
(
experiments
)
def
against_hybrid
(
experiments
):
"""Selects only experiments comparing with hybrid mode"""
exp1
,
exp2
=
experiments
library_exp1
=
exp1
.
split
(
'_'
)[
1
]
library_exp2
=
exp2
.
split
(
'_'
)[
1
]
return
(
library_exp1
==
'otf'
)
or
(
library_exp2
==
'otf'
)
def
compare_distributed
(
experiments
):
"""Compares the hybrid version of pmc-sog"""
return
same_tool
(
experiments
,
'pmc-sog'
)
and
\
same_strategy
(
experiments
)
and
\
same_distributed_number_threads
(
experiments
)
and
\
against_hybrid
(
experiments
)
# Plots to be created
plots
=
{
'compare_thread_library'
:
compare_threads_library
,
'compare_couvreur_algorithm'
:
compare_couvreur_strategies
,
'compare_tools'
:
compare_tools
,
'compare_multicore'
:
compare_multithreading
,
'compare_distributed'
:
compare_distributed
}
```
%% Cell type:markdown id: tags:
# Load Data
%% Cell type:code id: tags:
```
python
# Root folder
PROJECT_FOLDER
=
os
.
path
.
abspath
(
os
.
pardir
)
# csv file with the output
csv_file
=
os
.
path
.
join
(
PROJECT_FOLDER
,
"results"
,
"output.csv"
)
# Output folder
OUTPUT_FOLDER
=
os
.
path
.
join
(
PROJECT_FOLDER
,
"results"
,
"figures"
)
create_folder
(
OUTPUT_FOLDER
)
```
%% Cell type:code id: tags:
```
python
# read data
df
=
pd
.
read_csv
(
csv_file
)
# merge the information related to the experiment (# nodes, # threads, strategy) to the tool column
df
[
'tool'
]
=
df
[[
'tool'
,
'strategy'
,
'num_nodes'
,
'num_threads'
]].
astype
(
str
).
apply
(
'_'
.
join
,
axis
=
1
)
df
=
df
.
drop
(
columns
=
[
'strategy'
,
'num_nodes'
,
'num_threads'
])
df
.
head
()