Skip to content
Snippets Groups Projects
Subset.v 35.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • Micaela Mayero's avatar
    Micaela Mayero committed
    intros H; split; subset_unfold; intros x Hx1; specialize (H x); intuition.
    intros [_ H] x Hx1 Hx2; specialize (H x Hx1); now destruct H as [_ H].
    Qed.
    
    
    Lemma disj_diff_r :
      forall (A B C : U -> Prop),
        disj A B -> disj (diff A C) (diff B C).
    Proof.
    intros A B C H x HAx HBx; apply (H x); now apply (diff_lb_l _ C).
    Qed.
    
    
    Micaela Mayero's avatar
    Micaela Mayero committed
      forall (A B : U -> Prop),
        diff A B = emptyset <-> incl A B.
    Proof.
    intros; rewrite <- empty_emptyset; split; intros H.
    intros x Hx1; apply NNPP; intros Hx2; now apply (H x).
    intros x [Hx1 Hx2]; auto.
    Qed.
    
    
    Micaela Mayero's avatar
    Micaela Mayero committed
      forall (A : U -> Prop),
        diff A A = emptyset.
    Proof.
    
    Micaela Mayero's avatar
    Micaela Mayero committed
    Qed.
    
    Lemma full_diff :
      forall (A B : U -> Prop),
        diff A B = fullset <-> A = fullset /\ B = emptyset.
    Proof.
    intros; do 2 rewrite <- full_fullset; rewrite <- empty_emptyset.
    split; intros H.
    split; intros x; now destruct (H x) as [H1 H2].
    intros x; destruct H as [H1 H2]; split; [apply H1 | exact (H2 x)].
    Qed.
    
    Lemma compl_diff :
      forall (A B : U -> Prop),
        compl (diff A B) = union (compl A) B.
    Proof.
    intros; apply subset_ext; intros x; subset_auto.
    Qed.
    
    Lemma diff_empty_l :
      forall (A : U -> Prop),
        diff emptyset A = emptyset.
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma diff_empty_r :
      forall (A : U -> Prop),
        diff A emptyset = A.
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma diff_full_l:
      forall (A : U -> Prop),
        diff fullset A = compl A.
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma diff_full_r:
      forall (A : U -> Prop),
        diff A fullset = emptyset.
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma diff_compl_l :
      forall (A B : U -> Prop),
        diff (compl A) B = diff (compl B) A.
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma diff_compl_r :
      forall (A B : U -> Prop),
        diff A (compl B) = diff B (compl A).
    Proof.
    intros; apply subset_ext; intros x; subset_auto.
    Qed.
    
    Lemma diff_compl :
      forall (A B : U -> Prop),
        diff (compl A) (compl B) = diff B A.
    Proof.
    intros; apply subset_ext; intros x; subset_auto.
    Qed.
    
    Lemma diff_union_l :
      forall (A B C : U -> Prop),
        diff (union A B) C = union (diff A C) (diff B C).
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma diff_union_r :
      forall (A B C : U -> Prop),
        diff A (union B C) = inter (diff A B) (diff A C).
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma diff_inter_l :
      forall (A B C : U -> Prop),
        diff (inter A B) C = inter (diff A C) (diff B C).
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma diff_inter_r :
      forall (A B C : U -> Prop),
        diff A (inter B C) = union (diff A B) (diff A C).
    Proof.
    intros; apply subset_ext; intros x; subset_auto.
    Qed.
    
    
    Micaela Mayero's avatar
    Micaela Mayero committed
      forall (A B : U -> Prop),
        diff (union A B) A = diff B A.
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    
    Micaela Mayero's avatar
    Micaela Mayero committed
      forall (A B : U -> Prop),
        diff (union A B) B = diff A B.
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    
    Micaela Mayero's avatar
    Micaela Mayero committed
      forall (A B : U -> Prop),
        diff A (inter A B) = diff A B.
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    
    Micaela Mayero's avatar
    Micaela Mayero committed
      forall (A B : U -> Prop),
        diff B (inter A B) = diff B A.
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma union_diff_l :
      forall (A B C : U -> Prop),
        union (diff A B) C = diff (union A C) (diff B C).
    Proof.
    intros; apply subset_ext; intros x; subset_auto.
    Qed.
    
    Lemma union_diff_r :
      forall (A B C : U -> Prop),
        union A (diff B C) = diff (union A B) (diff C A).
    Proof.
    intros; apply subset_ext; intros x; subset_auto.
    Qed.
    
    Lemma distrib_inter_diff_l :
      forall (A B C : U -> Prop),
        inter A (diff B C) = diff (inter A B) (inter A C).
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma distrib_inter_diff_r :
      forall (A B C : U -> Prop),
        inter (diff A B) C = diff (inter A C) (inter B C).
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma diff2_l :
      forall (A B C : U -> Prop),
        diff (diff A B) C = diff A (union B C).
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma diff2_r :
      forall (A B C : U -> Prop),
        diff A (diff B C) = union (inter A C) (diff A B).
    Proof.
    intros; apply subset_ext; intros x; subset_auto.
    Qed.
    
    Lemma diff2_r_inter :
      forall (A B C : U -> Prop),
        incl A B ->
        diff A (diff B C) = inter A C.
    Proof.
    
    Micaela Mayero's avatar
    Micaela Mayero committed
    1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
    rewrite diff2_r, H; apply union_empty_r.
    Qed.
    
    Lemma diff2 :
      forall (A B C D : U -> Prop),
        diff (diff A B) (diff C D) =
          union (diff (inter A (compl C)) B)
                (diff (inter A D) B).
    Proof.
    intros; apply subset_ext; intros x; subset_auto.
    Qed.
    
    Lemma diff2_diag_l :
      forall (A B C : U -> Prop),
        diff (diff A B) (diff A C) = diff (inter A C) B.
    Proof.
    intros; apply subset_ext; intros x; subset_auto.
    Qed.
    
    Lemma diff2_cancel_left :
      forall (A B C : U -> Prop),
        incl A B ->
        diff (diff B C) (diff B A) = diff A C.
    Proof.
    intros; now rewrite diff2_diag_l, inter_comm, (proj1 (inter_left _ _)).
    Qed.
    
    Lemma diff2_diag_r :
      forall (A B C : U -> Prop),
        diff (diff A C) (diff B C) = diff (inter A (compl B)) C.
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    End Diff_Facts.
    
    
    Section Sym_diff_Facts.
    
    (** Facts about symmetric difference. *)
    
    Context {U : Type}. (* Universe. *)
    
    Lemma sym_diff_equiv_def_union :
      forall (A B : U -> Prop),
        sym_diff A B = union (diff A B) (diff B A).
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma sym_diff_equiv_def_diff :
      forall (A B : U -> Prop),
        sym_diff A B = diff (union A B) (inter A B).
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma union_equiv_def_sym_diff :
      forall (A B : U -> Prop),
        union A B = sym_diff (sym_diff A B) (inter A B).
    Proof.
    intros; apply subset_ext; intros x; subset_auto.
    Qed.
    
    Lemma inter_equiv_def_sym_diff :
      forall (A B : U -> Prop),
        inter A B = diff (union A B) (sym_diff A B).
    Proof.
    intros; apply subset_ext; intros x; subset_auto.
    Qed.
    
    Lemma diff_equiv_def_sym_diff_inter :
      forall (A B : U -> Prop),
        diff A B = sym_diff A (inter A B).
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma diff_equiv_def_sym_diff_union :
      forall (A B : U -> Prop),
        diff A B = sym_diff (union A B) B.
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    (* ((U -> Prop) -> Prop, sym_diff) is a Boolean group,
      ie an abelian group with the emptyset as neutral, and inv = id. *)
    
    Lemma sym_diff_assoc :
      forall (A B C : U -> Prop),
        sym_diff (sym_diff A B) C = sym_diff A (sym_diff B C).
    Proof.
    intros; apply subset_ext; intros x; subset_auto.
    Qed.
    
    Lemma sym_diff_comm :
      forall (A B : U -> Prop),
        sym_diff A B = sym_diff B A.
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma sym_diff_inv :
      forall (A : U -> Prop),
        sym_diff A A = emptyset.
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma sym_diff_empty_l :
      forall (A : U -> Prop),
        sym_diff emptyset A = A.
    Proof.
    intros; rewrite sym_diff_equiv_def_union, diff_empty_l, diff_empty_r.
    apply union_empty_l.
    Qed.
    
    Lemma sym_diff_empty_r :
      forall (A : U -> Prop),
        sym_diff A emptyset = A.
    Proof.
    intros; rewrite sym_diff_comm; apply sym_diff_empty_l.
    Qed.
    
    Lemma sym_diff_full_l :
      forall (A : U -> Prop),
        sym_diff fullset A = compl A.
    Proof.
    intros; rewrite sym_diff_equiv_def_diff, union_full_l, inter_full_l.
    symmetry; apply compl_equiv_def_diff.
    Qed.
    
    Lemma sym_diff_full_r :
      forall (A : U -> Prop),
        sym_diff A fullset = compl A.
    Proof.
    intros; rewrite sym_diff_comm; apply sym_diff_full_l.
    Qed.
    
    Lemma sym_diff_eq_reg_l :
      forall (A B C : U -> Prop),
        sym_diff A B = sym_diff A C -> B = C.
    Proof.
    intros A B C H.
    rewrite <- (sym_diff_empty_l B), <- (sym_diff_empty_l C), <- (sym_diff_inv A).
    do 2 rewrite sym_diff_assoc.
    now f_equal.
    Qed.
    
    Lemma sym_diff_eq_reg_r :
      forall (A B C : U -> Prop),
        sym_diff A B = sym_diff C B -> A = C.
    Proof.
    intros A B C H; apply sym_diff_eq_reg_l with B.
    now rewrite (sym_diff_comm _ A), (sym_diff_comm _ C).
    Qed.
    
    Lemma sym_diff_compl_l :
      forall (A : U -> Prop),
        sym_diff (compl A) A = fullset.
    Proof.
    intros; rewrite <- sym_diff_full_l, sym_diff_assoc, sym_diff_inv.
    apply sym_diff_empty_r.
    Qed.
    
    Lemma sym_diff_compl_r :
      forall (A : U -> Prop),
        sym_diff A (compl A) = fullset.
    Proof.
    intros; rewrite sym_diff_comm; apply sym_diff_compl_l.
    Qed.
    
    Lemma sym_diff_compl :
      forall (A B : U -> Prop),
        sym_diff (compl A) (compl B) = sym_diff A B.
    Proof.
    intros; apply subset_ext; intros x; subset_auto.
    Qed.
    
    Lemma super_distrib_union_sym_diff_l :
      forall (A B C : U -> Prop),
        incl (sym_diff (union A C) (union B C))
             (union (sym_diff A B) C).
    Proof.
    intros; subset_auto.
    Qed.
    
    Lemma super_distrib_union_sym_diff_r :
      forall (A B C : U -> Prop),
        incl (sym_diff (union A B) (union A C))
             (union A (sym_diff B C)).
    Proof.
    intros; subset_auto.
    Qed.
    
    Lemma super_distrib_union_sym_diff :
      forall (A B C D : U -> Prop),
        incl (sym_diff (union A C) (union B D))
             (union (sym_diff A B) (sym_diff C D)).
    Proof.
    intros; subset_auto.
    Qed.
    
    Lemma sub_distrib_sym_diff_union_l :
      forall (A B C : U -> Prop),
        incl (sym_diff (union A B) C)
             (union (sym_diff A C) (sym_diff B C)).
    Proof.
    intros; subset_auto.
    Qed.
    
    Lemma sub_distrib_sym_diff_union_r :
      forall (A B C : U -> Prop),
        incl (sym_diff A (union B C))
             (union (sym_diff A B) (sym_diff A C)).
    Proof.
    intros; subset_auto.
    Qed.
    
    Lemma sub_distrib_sym_diff_union :
      forall (A B C D : U -> Prop),
        incl (sym_diff (union A B) (union C D))
             (union (sym_diff A C) (sym_diff B D)).
    Proof.
    intros; subset_auto.
    Qed.
    
    (* ((U -> Prop) -> Prop, sym_diff, inter) is a Boolean ring,
      ie an abelian ring with fullset as neutral for intersection. *)
    
    Lemma distrib_inter_sym_diff_l :
      forall (A B C : U -> Prop),
        inter (sym_diff A B) C = sym_diff (inter A C) (inter B C).
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma distrib_inter_sym_diff_r :
      forall (A B C : U -> Prop),
        inter A (sym_diff B C) = sym_diff (inter A B) (inter A C).
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma distrib_inter_sym_diff :
      forall (A B C D : U -> Prop),
        inter (sym_diff A B) (sym_diff C D) =
        sym_diff (sym_diff (inter A C) (inter A D))
                 (sym_diff (inter B C) (inter B D)).
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma super_distrib_sym_diff_inter_l :
      forall (A B C : U -> Prop),
        incl (inter (sym_diff A C) (sym_diff B C))
             (sym_diff (inter A B) C).
    Proof.
    intros; subset_auto.
    Qed.
    
    Lemma super_distrib_sym_diff_inter_r :
      forall (A B C : U -> Prop),
        incl (inter (sym_diff A B) (sym_diff A C))
             (sym_diff A (inter B C)).
    Proof.
    intros; subset_auto.
    Qed.
    
    Lemma super_distrib_sym_diff_inter :
      forall (A B C D : U -> Prop),
        incl (inter (inter (sym_diff A C) (sym_diff A D))
                    (inter (sym_diff B C) (sym_diff B D)))
             (sym_diff (inter A B) (inter C D)).
    Proof.
    intros; subset_auto.
    Qed.
    
    (* ((U -> Prop) -> Prop, sym_diff, inter) is a Boolean algebra. *)
    
    Lemma sym_diff_union :
      forall (A B : U -> Prop),
        sym_diff A B = union A B <-> disj A B.
    Proof.
    intros; rewrite sym_diff_equiv_def_diff, <- disj_diff, (disj_sym (union _ _)).
    apply disj_inter_union.
    Qed.
    
    Lemma disj_sym_diff_inter :
      forall (A B : U -> Prop),
        disj (sym_diff A B) (inter A B).
    Proof.
    intros; subset_auto.
    Qed.
    
    Lemma union_sym_diff_inter :
      forall (A B : U -> Prop),
        union (sym_diff A B) (inter A B) = union A B.
    Proof.
    intros; apply subset_ext; intros x; subset_auto.
    Qed.
    
    Lemma partition_sym_diff_inter :
      forall (A B : U -> Prop),
        partition (union A B) (sym_diff A B) (inter A B).
    Proof.
    intros; split.
    symmetry; apply union_sym_diff_inter.
    apply disj_sym_diff_inter.
    Qed.
    
    Lemma sym_diff_cancel_middle :
      forall (A B C : U -> Prop),
        sym_diff (sym_diff A B) (sym_diff B C) = sym_diff A C.
    Proof.
    intros; apply subset_ext; intros x; subset_auto.
    Qed.
    
    Lemma sym_diff2 :
      forall (A B C D : U -> Prop),
        sym_diff (sym_diff A B) (sym_diff C D) =
          sym_diff A (sym_diff B (sym_diff C D)).
    Proof.
    intros; apply subset_ext; intros x; subset_auto.
    Qed.
    
    Lemma sym_diff_triangle_ineq :
      forall (A B C : U -> Prop),
        incl (sym_diff A C) (union (sym_diff A B) (sym_diff B C)).
    Proof.
    intros; intros x; subset_auto.
    Qed.
    
    Lemma sym_diff_diff_diag_l :
      forall (A B C : U -> Prop),
        incl (union B C) A ->
        sym_diff (diff A B) (diff A C) = sym_diff B C.
    Proof.
    intros A B C H; apply incl_union in H.
    rewrite sym_diff_equiv_def_union.
    repeat rewrite diff2_cancel_left; try easy.
    now rewrite <- sym_diff_equiv_def_union, sym_diff_comm.
    Qed.
    
    End Sym_diff_Facts.
    
    
    Section Partition_Facts.
    
    (** Facts about partition. *)
    
    Context {U : Type}. (* Universe. *)
    
    Lemma partition_sym :
      forall (A B C : U -> Prop),
        partition A B C -> partition A C B.
    Proof.
    intros A B C; unfold partition.
    now rewrite union_comm, disj_sym.
    Qed.
    
    Lemma partition_inter_l :
      forall (A B C D : U -> Prop),
        partition A B C -> partition (inter D A) (inter D B) (inter D C).
    Proof.
    intros A B C D [H1 H2]; split.
    rewrite H1; apply distrib_inter_union_l.
    now apply disj_inter_l.
    Qed.
    
    Lemma partition_inter_r :
      forall (A B C D : U -> Prop),
        partition A B C -> partition (inter A D) (inter B D) (inter C D).
    Proof.
    intros A B C D.
    rewrite (inter_comm A), (inter_comm B), (inter_comm C).
    apply partition_inter_l.
    Qed.
    
    
    Lemma partition_diff :
      forall (A B C D : U -> Prop),
        partition A B C -> partition (diff A D) (diff B D) (diff C D).
    Proof.
    intros; now apply partition_inter_r.
    Qed.
    
    
    Micaela Mayero's avatar
    Micaela Mayero committed
    End Partition_Facts.
    
    
    
    Section Prod_Facts.
    
    (** Facts about Cartesian product. *)
    
    Context {U1 U2 : Type}. (* Universes. *)
    
    
    François Clément's avatar
    François Clément committed
    Lemma inhabited_prod :
      inhabited U1 -> inhabited U2 -> inhabited (U1 * U2).
    Proof.
    intros [x1] [x2]; apply (inhabits (x1, x2)).
    Qed.
    
    
    Lemma prod_emptyset_l :
      forall A2, prod emptyset A2 = @emptyset (U1 * U2).
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma prod_emptyset_r :
      forall A1, prod A1 emptyset = @emptyset (U1 * U2).
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    
      prod fullset fullset = @fullset (U1 * U2).
    
    Proof.
    apply subset_ext; subset_auto.
    Qed.
    
    
    Lemma prod_fullset_l :
      forall A2, prod fullset A2 = fun x : U1 * U2 => A2 (snd x).
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    Lemma prod_fullset_r :
      forall A1, prod A1 fullset = fun x : U1 * U2 => A1 (fst x).
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.
    
    
      forall (A1 B1 : U1 -> Prop) (A2 B2 : U2 -> Prop),
        inter (prod A1 A2) (prod B1 B2) = prod (inter A1 B1) (inter A2 B2).
    
    intros; apply subset_ext; subset_auto.
    
      forall (A1 : U1 -> Prop) (A2 : U2 -> Prop),
        compl (prod A1 A2) = union (prod (compl A1) A2) (prod fullset (compl A2)).
    
    intros; apply subset_ext; intros x; subset_auto.
    
      forall (A1 : U1 -> Prop) (A2 : U2 -> Prop),
        disj (prod (compl A1) A2) (prod fullset (compl A2)).
    
    Lemma prod_compl_partition :
      forall (A1 : U1 -> Prop) (A2 : U2 -> Prop),
        partition (compl (prod A1 A2))
          (prod (compl A1) A2) (prod fullset (compl A2)).
    Proof.
    intros; split.
    apply prod_compl_union.
    apply prod_compl_disj.
    Qed.
    
    
    Lemma prod_swap :
      forall (A1 : U1 -> Prop) (A2 : U2 -> Prop),
        (fun x21 : U2 * U1 => prod A1 A2 (swap (fun x : U1 * U2 => x) x21)) = prod A2 A1.
    Proof.
    intros; apply subset_ext; subset_auto.
    Qed.