Project 'mayero/coq-num-analysis' was moved to 'mayero/rocq-num-analysis'. Please update any links and bookmarks that may still have the old path.
Newer
Older
intros H; split; subset_unfold; intros x Hx1; specialize (H x); intuition.
intros [_ H] x Hx1 Hx2; specialize (H x Hx1); now destruct H as [_ H].
Qed.
Lemma disj_diff_r :
forall (A B C : U -> Prop),
disj A B -> disj (diff A C) (diff B C).
Proof.
intros A B C H x HAx HBx; apply (H x); now apply (diff_lb_l _ C).
Qed.

François Clément
committed
Lemma diff_empty :
forall (A B : U -> Prop),
diff A B = emptyset <-> incl A B.
Proof.
intros; rewrite <- empty_emptyset; split; intros H.
intros x Hx1; apply NNPP; intros Hx2; now apply (H x).
intros x [Hx1 Hx2]; auto.
Qed.

François Clément
committed
Lemma diff_empty_diag :
forall (A : U -> Prop),
diff A A = emptyset.
Proof.

François Clément
committed
intros; now rewrite diff_empty.
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
Qed.
Lemma full_diff :
forall (A B : U -> Prop),
diff A B = fullset <-> A = fullset /\ B = emptyset.
Proof.
intros; do 2 rewrite <- full_fullset; rewrite <- empty_emptyset.
split; intros H.
split; intros x; now destruct (H x) as [H1 H2].
intros x; destruct H as [H1 H2]; split; [apply H1 | exact (H2 x)].
Qed.
Lemma compl_diff :
forall (A B : U -> Prop),
compl (diff A B) = union (compl A) B.
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
Lemma diff_empty_l :
forall (A : U -> Prop),
diff emptyset A = emptyset.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma diff_empty_r :
forall (A : U -> Prop),
diff A emptyset = A.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma diff_full_l:
forall (A : U -> Prop),
diff fullset A = compl A.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma diff_full_r:
forall (A : U -> Prop),
diff A fullset = emptyset.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma diff_compl_l :
forall (A B : U -> Prop),
diff (compl A) B = diff (compl B) A.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma diff_compl_r :
forall (A B : U -> Prop),
diff A (compl B) = diff B (compl A).
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
Lemma diff_compl :
forall (A B : U -> Prop),
diff (compl A) (compl B) = diff B A.
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
Lemma diff_union_l :
forall (A B C : U -> Prop),
diff (union A B) C = union (diff A C) (diff B C).
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma diff_union_r :
forall (A B C : U -> Prop),
diff A (union B C) = inter (diff A B) (diff A C).
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma diff_inter_l :
forall (A B C : U -> Prop),
diff (inter A B) C = inter (diff A C) (diff B C).
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma diff_inter_r :
forall (A B C : U -> Prop),
diff A (inter B C) = union (diff A B) (diff A C).
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.

François Clément
committed
Lemma diff_union_l_diag :
forall (A B : U -> Prop),
diff (union A B) A = diff B A.
Proof.
intros; apply subset_ext; subset_auto.
Qed.

François Clément
committed
Lemma diff_union_r_diag :
forall (A B : U -> Prop),
diff (union A B) B = diff A B.
Proof.
intros; apply subset_ext; subset_auto.
Qed.

François Clément
committed
Lemma diff_inter_l_diag :
forall (A B : U -> Prop),
diff A (inter A B) = diff A B.
Proof.
intros; apply subset_ext; subset_auto.
Qed.

François Clément
committed
Lemma diff_inter_r_diag :
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
forall (A B : U -> Prop),
diff B (inter A B) = diff B A.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma union_diff_l :
forall (A B C : U -> Prop),
union (diff A B) C = diff (union A C) (diff B C).
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
Lemma union_diff_r :
forall (A B C : U -> Prop),
union A (diff B C) = diff (union A B) (diff C A).
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
Lemma distrib_inter_diff_l :
forall (A B C : U -> Prop),
inter A (diff B C) = diff (inter A B) (inter A C).
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma distrib_inter_diff_r :
forall (A B C : U -> Prop),
inter (diff A B) C = diff (inter A C) (inter B C).
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma diff2_l :
forall (A B C : U -> Prop),
diff (diff A B) C = diff A (union B C).
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma diff2_r :
forall (A B C : U -> Prop),
diff A (diff B C) = union (inter A C) (diff A B).
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
Lemma diff2_r_inter :
forall (A B C : U -> Prop),
incl A B ->
diff A (diff B C) = inter A C.
Proof.

François Clément
committed
intros A B C H; apply diff_empty in H.
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
rewrite diff2_r, H; apply union_empty_r.
Qed.
Lemma diff2 :
forall (A B C D : U -> Prop),
diff (diff A B) (diff C D) =
union (diff (inter A (compl C)) B)
(diff (inter A D) B).
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
Lemma diff2_diag_l :
forall (A B C : U -> Prop),
diff (diff A B) (diff A C) = diff (inter A C) B.
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
Lemma diff2_cancel_left :
forall (A B C : U -> Prop),
incl A B ->
diff (diff B C) (diff B A) = diff A C.
Proof.
intros; now rewrite diff2_diag_l, inter_comm, (proj1 (inter_left _ _)).
Qed.
Lemma diff2_diag_r :
forall (A B C : U -> Prop),
diff (diff A C) (diff B C) = diff (inter A (compl B)) C.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
End Diff_Facts.
Section Sym_diff_Facts.
(** Facts about symmetric difference. *)
Context {U : Type}. (* Universe. *)
Lemma sym_diff_equiv_def_union :
forall (A B : U -> Prop),
sym_diff A B = union (diff A B) (diff B A).
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma sym_diff_equiv_def_diff :
forall (A B : U -> Prop),
sym_diff A B = diff (union A B) (inter A B).
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma union_equiv_def_sym_diff :
forall (A B : U -> Prop),
union A B = sym_diff (sym_diff A B) (inter A B).
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
Lemma inter_equiv_def_sym_diff :
forall (A B : U -> Prop),
inter A B = diff (union A B) (sym_diff A B).
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
Lemma diff_equiv_def_sym_diff_inter :
forall (A B : U -> Prop),
diff A B = sym_diff A (inter A B).
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma diff_equiv_def_sym_diff_union :
forall (A B : U -> Prop),
diff A B = sym_diff (union A B) B.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
(* ((U -> Prop) -> Prop, sym_diff) is a Boolean group,
ie an abelian group with the emptyset as neutral, and inv = id. *)
Lemma sym_diff_assoc :
forall (A B C : U -> Prop),
sym_diff (sym_diff A B) C = sym_diff A (sym_diff B C).
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
Lemma sym_diff_comm :
forall (A B : U -> Prop),
sym_diff A B = sym_diff B A.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma sym_diff_inv :
forall (A : U -> Prop),
sym_diff A A = emptyset.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma sym_diff_empty_l :
forall (A : U -> Prop),
sym_diff emptyset A = A.
Proof.
intros; rewrite sym_diff_equiv_def_union, diff_empty_l, diff_empty_r.
apply union_empty_l.
Qed.
Lemma sym_diff_empty_r :
forall (A : U -> Prop),
sym_diff A emptyset = A.
Proof.
intros; rewrite sym_diff_comm; apply sym_diff_empty_l.
Qed.
Lemma sym_diff_full_l :
forall (A : U -> Prop),
sym_diff fullset A = compl A.
Proof.
intros; rewrite sym_diff_equiv_def_diff, union_full_l, inter_full_l.
symmetry; apply compl_equiv_def_diff.
Qed.
Lemma sym_diff_full_r :
forall (A : U -> Prop),
sym_diff A fullset = compl A.
Proof.
intros; rewrite sym_diff_comm; apply sym_diff_full_l.
Qed.
Lemma sym_diff_eq_reg_l :
forall (A B C : U -> Prop),
sym_diff A B = sym_diff A C -> B = C.
Proof.
intros A B C H.
rewrite <- (sym_diff_empty_l B), <- (sym_diff_empty_l C), <- (sym_diff_inv A).
do 2 rewrite sym_diff_assoc.
now f_equal.
Qed.
Lemma sym_diff_eq_reg_r :
forall (A B C : U -> Prop),
sym_diff A B = sym_diff C B -> A = C.
Proof.
intros A B C H; apply sym_diff_eq_reg_l with B.
now rewrite (sym_diff_comm _ A), (sym_diff_comm _ C).
Qed.
Lemma sym_diff_compl_l :
forall (A : U -> Prop),
sym_diff (compl A) A = fullset.
Proof.
intros; rewrite <- sym_diff_full_l, sym_diff_assoc, sym_diff_inv.
apply sym_diff_empty_r.
Qed.
Lemma sym_diff_compl_r :
forall (A : U -> Prop),
sym_diff A (compl A) = fullset.
Proof.
intros; rewrite sym_diff_comm; apply sym_diff_compl_l.
Qed.
Lemma sym_diff_compl :
forall (A B : U -> Prop),
sym_diff (compl A) (compl B) = sym_diff A B.
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
Lemma super_distrib_union_sym_diff_l :
forall (A B C : U -> Prop),
incl (sym_diff (union A C) (union B C))
(union (sym_diff A B) C).
Proof.
intros; subset_auto.
Qed.
Lemma super_distrib_union_sym_diff_r :
forall (A B C : U -> Prop),
incl (sym_diff (union A B) (union A C))
(union A (sym_diff B C)).
Proof.
intros; subset_auto.
Qed.
Lemma super_distrib_union_sym_diff :
forall (A B C D : U -> Prop),
incl (sym_diff (union A C) (union B D))
(union (sym_diff A B) (sym_diff C D)).
Proof.
intros; subset_auto.
Qed.
Lemma sub_distrib_sym_diff_union_l :
forall (A B C : U -> Prop),
incl (sym_diff (union A B) C)
(union (sym_diff A C) (sym_diff B C)).
Proof.
intros; subset_auto.
Qed.
Lemma sub_distrib_sym_diff_union_r :
forall (A B C : U -> Prop),
incl (sym_diff A (union B C))
(union (sym_diff A B) (sym_diff A C)).
Proof.
intros; subset_auto.
Qed.
Lemma sub_distrib_sym_diff_union :
forall (A B C D : U -> Prop),
incl (sym_diff (union A B) (union C D))
(union (sym_diff A C) (sym_diff B D)).
Proof.
intros; subset_auto.
Qed.
(* ((U -> Prop) -> Prop, sym_diff, inter) is a Boolean ring,
ie an abelian ring with fullset as neutral for intersection. *)
Lemma distrib_inter_sym_diff_l :
forall (A B C : U -> Prop),
inter (sym_diff A B) C = sym_diff (inter A C) (inter B C).
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma distrib_inter_sym_diff_r :
forall (A B C : U -> Prop),
inter A (sym_diff B C) = sym_diff (inter A B) (inter A C).
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma distrib_inter_sym_diff :
forall (A B C D : U -> Prop),
inter (sym_diff A B) (sym_diff C D) =
sym_diff (sym_diff (inter A C) (inter A D))
(sym_diff (inter B C) (inter B D)).
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma super_distrib_sym_diff_inter_l :
forall (A B C : U -> Prop),
incl (inter (sym_diff A C) (sym_diff B C))
(sym_diff (inter A B) C).
Proof.
intros; subset_auto.
Qed.
Lemma super_distrib_sym_diff_inter_r :
forall (A B C : U -> Prop),
incl (inter (sym_diff A B) (sym_diff A C))
(sym_diff A (inter B C)).
Proof.
intros; subset_auto.
Qed.
Lemma super_distrib_sym_diff_inter :
forall (A B C D : U -> Prop),
incl (inter (inter (sym_diff A C) (sym_diff A D))
(inter (sym_diff B C) (sym_diff B D)))
(sym_diff (inter A B) (inter C D)).
Proof.
intros; subset_auto.
Qed.
(* ((U -> Prop) -> Prop, sym_diff, inter) is a Boolean algebra. *)
Lemma sym_diff_union :
forall (A B : U -> Prop),
sym_diff A B = union A B <-> disj A B.
Proof.
intros; rewrite sym_diff_equiv_def_diff, <- disj_diff, (disj_sym (union _ _)).
apply disj_inter_union.
Qed.
Lemma disj_sym_diff_inter :
forall (A B : U -> Prop),
disj (sym_diff A B) (inter A B).
Proof.
intros; subset_auto.
Qed.
Lemma union_sym_diff_inter :
forall (A B : U -> Prop),
union (sym_diff A B) (inter A B) = union A B.
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
Lemma partition_sym_diff_inter :
forall (A B : U -> Prop),
partition (union A B) (sym_diff A B) (inter A B).
Proof.
intros; split.
symmetry; apply union_sym_diff_inter.
apply disj_sym_diff_inter.
Qed.
Lemma sym_diff_cancel_middle :
forall (A B C : U -> Prop),
sym_diff (sym_diff A B) (sym_diff B C) = sym_diff A C.
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
Lemma sym_diff2 :
forall (A B C D : U -> Prop),
sym_diff (sym_diff A B) (sym_diff C D) =
sym_diff A (sym_diff B (sym_diff C D)).
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
Lemma sym_diff_triangle_ineq :
forall (A B C : U -> Prop),
incl (sym_diff A C) (union (sym_diff A B) (sym_diff B C)).
Proof.
intros; intros x; subset_auto.
Qed.
Lemma sym_diff_diff_diag_l :
forall (A B C : U -> Prop),
incl (union B C) A ->
sym_diff (diff A B) (diff A C) = sym_diff B C.
Proof.
intros A B C H; apply incl_union in H.
rewrite sym_diff_equiv_def_union.
repeat rewrite diff2_cancel_left; try easy.
now rewrite <- sym_diff_equiv_def_union, sym_diff_comm.
Qed.
End Sym_diff_Facts.
Section Partition_Facts.
(** Facts about partition. *)
Context {U : Type}. (* Universe. *)
Lemma partition_sym :
forall (A B C : U -> Prop),
partition A B C -> partition A C B.
Proof.
intros A B C; unfold partition.
now rewrite union_comm, disj_sym.
Qed.
Lemma partition_inter_l :
forall (A B C D : U -> Prop),
partition A B C -> partition (inter D A) (inter D B) (inter D C).
Proof.
intros A B C D [H1 H2]; split.
rewrite H1; apply distrib_inter_union_l.
now apply disj_inter_l.
Qed.
Lemma partition_inter_r :
forall (A B C D : U -> Prop),
partition A B C -> partition (inter A D) (inter B D) (inter C D).
Proof.
intros A B C D.
rewrite (inter_comm A), (inter_comm B), (inter_comm C).
apply partition_inter_l.
Qed.
Lemma partition_diff :
forall (A B C D : U -> Prop),
partition A B C -> partition (diff A D) (diff B D) (diff C D).
Proof.
intros; now apply partition_inter_r.
Qed.
Section Prod_Facts.
(** Facts about Cartesian product. *)
Context {U1 U2 : Type}. (* Universes. *)
Lemma inhabited_prod :
inhabited U1 -> inhabited U2 -> inhabited (U1 * U2).
Proof.
intros [x1] [x2]; apply (inhabits (x1, x2)).
Qed.
Lemma prod_emptyset_l :
forall A2, prod emptyset A2 = @emptyset (U1 * U2).
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma prod_emptyset_r :
forall A1, prod A1 emptyset = @emptyset (U1 * U2).
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma prod_fullset :
prod fullset fullset = @fullset (U1 * U2).
Proof.
apply subset_ext; subset_auto.
Qed.
Lemma prod_fullset_l :
forall A2, prod fullset A2 = fun x : U1 * U2 => A2 (snd x).
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma prod_fullset_r :
forall A1, prod A1 fullset = fun x : U1 * U2 => A1 (fst x).
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma prod_inter :
forall (A1 B1 : U1 -> Prop) (A2 B2 : U2 -> Prop),
inter (prod A1 A2) (prod B1 B2) = prod (inter A1 B1) (inter A2 B2).
intros; apply subset_ext; subset_auto.
Qed.
Lemma prod_compl_union :
forall (A1 : U1 -> Prop) (A2 : U2 -> Prop),
compl (prod A1 A2) = union (prod (compl A1) A2) (prod fullset (compl A2)).
intros; apply subset_ext; intros x; subset_auto.
Qed.
Lemma prod_compl_disj :
forall (A1 : U1 -> Prop) (A2 : U2 -> Prop),
disj (prod (compl A1) A2) (prod fullset (compl A2)).
Proof.
subset_auto.
Qed.
Lemma prod_compl_partition :
forall (A1 : U1 -> Prop) (A2 : U2 -> Prop),
partition (compl (prod A1 A2))
(prod (compl A1) A2) (prod fullset (compl A2)).
Proof.
intros; split.
apply prod_compl_union.
apply prod_compl_disj.
Qed.
Lemma prod_swap :
forall (A1 : U1 -> Prop) (A2 : U2 -> Prop),
(fun x21 : U2 * U1 => prod A1 A2 (swap (fun x : U1 * U2 => x) x21)) = prod A2 A1.
Proof.
intros; apply subset_ext; subset_auto.
Qed.