Skip to content
Snippets Groups Projects
Subset_system.txt 2.72 KiB
Newer Older
  • Learn to ignore specific revisions
  • Micaela Mayero's avatar
    Micaela Mayero committed
    Ne, wE, wF, Pt, PtC, C, PtD', D', PtD, D, sD, Ud, U, I
    Ptf, PtfC, PtfD', PtfD, Udf, Uf, If   (Umf and Imf are always true)
    Ptc, Udc, Umc, Imc, Uc, Ic
    
          wE, wF => Ne
    C => I => Ne => wE
    C => U => Ne => wF
    PtD => Ne => wE
    D => Ne => wE
    PtC => wF => wE
    C => wF <=> wE
    C => PtC
    D' => PtD'
    D => PtD
    PtD => PtD'
    I => PtC => PtD
    wF => PtD' => PtC
    wF => D' => C
    C => Ud <=> D'
         D => D'
    I => D' => D
         sD => D', Ud
    I => D' => Ud => sD
    C => I => D
         D => I
    D => Ud => U
         U => !Ud
    C => U <=> I, D
    U => sD <=> D
    sD => I => U
    
    Pt => !Ptf
    PtC => !PtfC
    PtD => !PtfD
    PtfD => Ne => wE
    PtfC => wF => wE
    C => PtfC
    D' => PtfD'
    D => PtfD
    PtfD => PtfD'
    I => PtfC => PtfD
    wF => PtfD' => PtfC
    If <=> I
    Uf <=> U
    Udf <=> Ud
    Uf => !Udf, !Ud
    C => Uf <=> If
    
    I => I (U+)  (U+ = finite disjoint unions)
    Ud (U+)
    I => PtfD => D (U+)
    
    Micaela Mayero's avatar
    Micaela Mayero committed
    
    Ptc => !Ptf
    Udc => !Udf, !Ud
    Ic => !Imc, !If, !I
    Uc => !Umc, !Udc, !Uf, !Udf, !U, !Ud
    C => Udc => D'
    C => Uc <=> Ic
    C => Umc <=> Imc
         D' => Udc => Umc
         Ud => Umc => Udc
         D => Udc => Uc
    D => Ud => Umc => Uc
    
    P   = Ne + If         => I
    R/2 = wE + I + PtfD   => Ne, If
    R   = Ne + D + Uf     => wE, D', sD, Ud, U, I, Udf, If
    A/2 = R/2 + wF        => Ne, wE, PtfC, PtfD, If
    A   = wE + C + Uf     => Ne, wF, D', D, sD, Ud, U, I, Udf, If
    Mc  = Umc + Imc
    L   = wF + C + Udc    => Ne, wE, D', Ud, Udf, Umc, Imc
    ?dR  = Ne + D + U + Ic => wE, D', sD, Ud, I, Udf, Uf, If, Imc
    ?sR  = Ne + D + Uc     => wE, D', sD, Ud, U, I, Udf, Uf, If, Udc, Umc
    sA  = A + Uc          => Ne, wE, wF, C, D', D, sD, Ud, U, I,
                             Udf, Uf, If, Udc, Umc, Imc, Ic
    
    P   <=> Ne + I
    R/2 <=> [Ne | wE] + I + PtfD
    R   <=> [Ne | wE] + [D + U | D + Ud | sD + I | D' + Ud + I]
    A/2 <=> wF + I + [PtfC | PtfD]
    A   <=> [Ne | wE | wF] + C + [U | I]
        <=> wF + D
    L   <=> wF + D' + Umc
    ?dR  <=> [Ne | wE] + D + U + Ic
    ?sR  <=> [Ne | wE] + D + Uc
    sA  <=> [Ne | wE | wF] + C + [Uc | Ic]
    
    R/2 => P
    R   => P, R/2           (R(P(g)) = R(g))
    A/2 => P, R/2
    A   => P, R, A/2        (A(P(g)) = A(g), A(R(g)) = A(g))
    L   => Mc               (L(Mc(g)) = L(g))
    ?dR  => P, R             (dR(P(g)) = dR(g), dR(R(g)) = dR(g))
    ?sR  => P, R             (sR(P(g)) = sR(g), sR(R(g)) = sR(g))
    sA  => P, R, A, Mc, L,  (sA(P(g)) = sA(g), sA(R(g)) = sA(g), sA(A(g)) = sA(g),
           dR, sR            sA(Mc(g)) = sA(g), sA(L(g)) = sA(g))
    
    R  <= P + sD
    R  <= R/2 + Ud
    A  <= P + C
    A  <= R + [wF | C]
    A  <= A/2 + Ud
    L  <= Mc + wF + D'
    ?dR <= R + Ic
    ?sR <= R + Uc
    sA <= P + C + [Udc | Umc]
    sA <= R + [wF | C] + [Udc | Umc]
    sA <= A + [Udc | Umc]
    sA <= Mc + wE + C + U
    sA <= L + I
    ?sA <= dR + ??
    ?sA <= sR + wF
    
    sA <=> P + L <=> A + Mc
    
    L(P) <=> sA(P)       (P c L => sA(P) c L)
    ?P(L) <=> sA(L)       (L c P => sA(L) c P)
    
    Mc(A) <=> sA(A)      (A c Mc => sA(A) c Mc)
    ?A(Mc) <=> sA(Mc)     (Mc c A => sA(Mc) c A)