diff --git a/FEM/Algebra/Finite_family.v b/FEM/Algebra/Finite_family.v index 7fdfd41f701ac21179216c0f4a21bca8550b8412..dc741fdd93641aa1585ca3b497cdc08858e0c410 100644 --- a/FEM/Algebra/Finite_family.v +++ b/FEM/Algebra/Finite_family.v @@ -4416,24 +4416,18 @@ contradict Hj1; move: Hj2; rewrite -!ord0_equiv_alt; move=>> ->. assert (HP0' : concatF P0 P' ord0) by easy. apply (filterP_ord_ind_l_in_0 HP0'), ord_inj; easy. (* *) -pose (k := cast_ord (sym_eq (add1n _)) j). -replace j with k by now apply ord_inj. -assert (Hk1 : ~ (filterP_ord (cast_ord (eq_sym H) k) < 1)%coq_nat) - by now replace (cast_ord _ _) with (cast_ord (eq_sym H) j); [| apply ord_inj]. -assert (Hk2 : ~ (k < 1)%coq_nat) by easy. -clear Hj1 Hj2. rewrite !concatF_correct_r; f_equal; apply ord_inj; simpl; apply addn_is_subn. -assert (H0 : cast_ord (lenPF_ind_l_in HP0) (cast_ord (eq_sym H) k) <> ord0). - rewrite cast_ord_comp; contradict Hk2; apply cast_ord_0 in Hk2. - simpl in *; rewrite Hk2; apply Nat.lt_0_1. +assert (H0 : cast_ord (lenPF_ind_l_in HP0) (cast_ord (eq_sym H) j) <> ord0). + rewrite cast_ord_comp; contradict Hj2; apply cast_ord_0 in Hj2. + simpl; rewrite Hj2; apply Nat.lt_0_1. rewrite filterP_ord_ind_l_in_n0 lift_S_correct -add1n; f_equal. assert (HP2 : equivFA (liftF_S (concatF P0 P')) (liftF_S P)). unfold P0, P'; rewrite concatF_splitF_S1p'. unfold castF_S1p; rewrite castF_refl; easy. rewrite (filterP_ord_ext HP2). -assert (Hk : cast_ord (lenPF_ext HP2) (lower_S H0) = concat_r_ord Hk2) +assert (Hj : cast_ord (lenPF_ext HP2) (lower_S H0) = concat_r_ord Hj2) by now apply ord_inj. -rewrite Hk; easy. +rewrite Hj; easy. Qed. Lemma filterPF_ind_l_out :