diff --git a/Lebesgue/Set_theory/Set_system/Set_system_any.v b/Lebesgue/Set_theory/Set_system/Set_system_any.v index 7852a9a4ebf45d1324eb650293a0b427d5bbed71..2684a132dc0539d7e7837900a434ce495d80003a 100644 --- a/Lebesgue/Set_theory/Set_system/Set_system_any.v +++ b/Lebesgue/Set_theory/Set_system/Set_system_any.v @@ -503,17 +503,6 @@ apply Union_any_closure_Gen. apply Union_any_closure_monot, incl_add_r. Qed. -(* -Lemma Uac_Ifc_wFull : - wFull genU -> Uac_Ifc_wF = Union_any_closure (Inter_finite_closure genU). -Proof. -intros H; unfold Uac_Ifc_wF; f_equal; apply Ext_equiv; split; intros A HA. -destruct HA as [HA | HA]; try easy; - rewrite HA; apply Inter_finite_closure_Gen; easy. -apply incl_add_r; easy. -Qed. -*) - Lemma Uac_Ifc_wF_is_Open : is_Open Uac_Ifc_wF. Proof. apply Union_any_closure_is_Open. @@ -547,105 +536,26 @@ Qed. Lemma Open_equiv : Open genU = Uac_Ifc_wF. Proof. -apply Ext_equiv; split; intros A HA. -(* *) -induction HA as [A HA | | | A N HA1 HA2 | Idx fA HIdx HfA1 HfA2]. -apply Uac_Ifc_wF_Gen; easy. -rewrite <- unionp_any_nullary; apply Uac; easy. -apply Union_any_closure_Gen; right; easy. -(* . *) -destruct (choice (fun (i : {n | n < S N}) QB => - Incl QB (Inter_finite_closure_wF genU) /\ - A (proj1_sig i) = unionp_any QB)) as [QB HQB]. - intros [n Hn]; simpl; induction (HA2 n Hn) as [QB HQB]. - exists QB; repeat split; easy. -assert (HA3 : inter_finite A N = unionp_any (interf_any QB)). - admit. -rewrite HA3; apply Uac. -intros C HC. - - -Search incl interf_any. - - -admit. - - -(* . *) - -admit. - -(* *) -induction HA as [Q HQ1]. -destruct (empty_dec Q) as [HQ2 | HQ2]. -rewrite empty_equiv in HQ2; rewrite HQ2, unionp_any_nullary; apply Open_wEmpty. +rewrite <- Uac_Ifc_wF_is_Open; apply Open_ext. +apply Incl_trans with Uac_Ifc_wF; [apply Uac_Ifc_wF_Gen | apply Open_Gen]. +intros A HA; induction HA as [Q HQ]. +destruct (empty_dec Q) as [HQ' | HQ']. +rewrite empty_equiv in HQ'; rewrite HQ', unionp_any_nullary; apply Open_wEmpty. apply Open_Union_any; try easy. -apply Incl_trans with (Inter_finite_closure genU); try easy. -intros A HA. - - - -; induction HA; apply Open_Inter_finite. -intros; apply Open_Gen; auto. -Admitted. +apply Incl_trans with (Inter_finite_closure_wF genU); try easy. +intros A [HA | HA]. +induction HA as [B N HB]; apply Open_Inter_finite; intros; apply Open_Gen; auto. +rewrite HA; apply Open_wFull. +Qed. Lemma Inter_finite_closure_is_Basisp : - wFull genU -> is_Basisp (Open genU) (Inter_finite_closure genU). + is_Basisp (Open genU) (Inter_finite_closure_wF genU). Proof. intros. rewrite Open_equiv; try easy. apply is_Basisp_Union_any_closure. Qed. -(* -intros H; split. -intros A [B N HB]; apply Open_Inter_finite; intros; apply Open_Gen; auto. -intros A HA; apply set_ext_equiv; split. -(* *) -induction HA as [A HA | | | A N HA1 HA2 | Idx fA HIdx HfA1 HfA2]; try easy. -(* . *) -intros x Hx; exists A; repeat split; try easy. -apply Inter_finite_closure_Gen; easy. -(* . *) -intros x _; exists fullset; repeat split; try easy. -rewrite <- (inter_finite_cst fullset 0); easy. -(* . *) -intros x Hx. -destruct (choice (fun (i : {n | n < S N}) B => - Inter_finite_closure genU B /\ incl B (A (proj1_sig i)))) as [C HC]. - intros [n Hn]; destruct (HA2 n Hn x (Hx n Hn)) as [B HB]. - exists B; repeat split; easy. -exists (interf_any C); rewrite interf_any_inter_finite_eq; repeat split. -(* .. *) -intros n Hn; destruct (Compare_dec.lt_dec n (S N)); try easy. -rewrite (proof_irrelevance _ _ Hn). -destruct (HC (exist _ n Hn)) as [H1 _]. -induction H1. - -admit. - -(* .. *) -intros y Hy n Hn; specialize (Hy n Hn); simpl in Hy. -destruct (Compare_dec.lt_dec n (S N)); try easy. -rewrite (proof_irrelevance _ _ Hn) in Hy. -destruct (HC (exist _ n Hn)) as [_ H2]; auto. -(* .. *) -intros n Hn; specialize (Hx n Hn). -destruct (Compare_dec.lt_dec n (S N)); try easy. -rewrite (proof_irrelevance _ _ Hn). -specialize (HC (exist _ n Hn)). - -admit. - -(* . *) -intros x [i Hx]; destruct (HfA2 i x Hx) as [B [[HB1 HB2] HB3]]. -exists B; repeat split; try easy. -intros y Hy; exists i; auto. -(* *) -intros x [B [[HB1 HB2] HB3]]; auto. -Admitted. -*) - End Basis_Facts3.