diff --git a/FEM/Algebra/AffineSpace_new.v b/FEM/Algebra/AffineSpace_new.v index bcbedc16b35d6f8398325242862983bd513f1e26..377e9ee153846713887adeda026ae0cb88884743 100644 --- a/FEM/Algebra/AffineSpace_new.v +++ b/FEM/Algebra/AffineSpace_new.v @@ -215,7 +215,8 @@ Context {E : AffineSpace V}. Lemma transl_EX : { f | forall (A : E), cancel (vect A) (f A) /\ cancel (f A) (vect A) }. Proof. -assert (H : forall A : E, exists ! f, cancel (vect A) f /\ cancel f (vect A)). +assert (H : forall A : E, { f | unique (fun g => cancel (vect A) g /\ cancel g (vect A)) f }). + intros A; destruct (vect_l_bij_EX ) intros A; destruct (vect_l_bij A) as [f Hf1 Hf2]; exists f; split; [easy |]. intros f' [Hf'1 Hf'2]; apply fun_ext; intros u. apply (vect_l_inj A); rewrite Hf2 Hf'2; easy.