diff --git a/Algebra/AffineSpace/AffineSpace_aff_map.v b/Algebra/AffineSpace/AffineSpace_aff_map.v index 3c82d5e63642a5aabc9556c258d74d7d97df7037..2687b09d7124a1b52c0fdb0cbf506528ec032228 100644 --- a/Algebra/AffineSpace/AffineSpace_aff_map.v +++ b/Algebra/AffineSpace/AffineSpace_aff_map.v @@ -469,7 +469,7 @@ Lemma am_gather_equiv : aff_map (gather f) <-> (forall i, aff_map (f i)). Proof. intros n f; pose (O1 := point_of_as E1). -rewrite (am_lm_equiv O1) fct_lm_gather -lm_gather_equiv. +rewrite (am_lm_equiv O1) fct_lm_gather lm_gather_equiv. apply equiv_forall; intro; rewrite am_lm_equiv; easy. Qed. diff --git a/Algebra/ModuleSpace/ModuleSpace_R_compl.v b/Algebra/ModuleSpace/ModuleSpace_R_compl.v index 81dd5fe5fd885fdab70444882972117346ae4cca..c52299cdccb486c8dff83d4ad252fe0893f48bc9 100644 --- a/Algebra/ModuleSpace/ModuleSpace_R_compl.v +++ b/Algebra/ModuleSpace/ModuleSpace_R_compl.v @@ -622,7 +622,7 @@ Lemma part1F_fct_lm : forall {n} (i0 : 'I_n.+1), lin_map (part1F^~ i0 - (fun=> part1F 0 i0) : 'R^n -> 'R^n.+1). Proof. -intros n i0; apply lm_scatter; intros i; split. +intros n i0; apply lm_scatter_rev; intros i; split. (* *) intros u v; rewrite !scatter_eq !fct_minus_eq; destruct (ord_eq_dec i i0) as [-> | Hi]. diff --git a/Algebra/ModuleSpace/ModuleSpace_lin_map.v b/Algebra/ModuleSpace/ModuleSpace_lin_map.v index 83a76440be52798620a7a56bf988cbb9546c0cef..c57f949f726cd20e203a4e0cb7a19ff48ad2e782 100644 --- a/Algebra/ModuleSpace/ModuleSpace_lin_map.v +++ b/Algebra/ModuleSpace/ModuleSpace_lin_map.v @@ -401,23 +401,23 @@ Qed. Lemma lm_gather_equiv : forall {n} (f : '(E1 -> E2)^n), - (forall i, lin_map (f i)) <-> lin_map (gather f). -Proof. intros; split; [apply lm_gather | apply lm_gather_rev]. Qed. + lin_map (gather f) <-> (forall i, lin_map (f i)). +Proof. intros; split; [apply lm_gather_rev | apply lm_gather]. Qed. Lemma lm_scatter : forall {n} (f : E1 -> 'E2^n), - (forall i, lin_map (scatter f i)) -> lin_map f. -Proof. intros n f; apply (lm_gather (scatter f)). Qed. + lin_map f -> forall i, lin_map (scatter f i). +Proof. intros n f; apply (lm_gather_rev (scatter f)). Qed. Lemma lm_scatter_rev : forall {n} (f : E1 -> 'E2^n), - lin_map f -> forall i, lin_map (scatter f i). -Proof. intros n f; apply (lm_gather_rev (scatter f)). Qed. + (forall i, lin_map (scatter f i)) -> lin_map f. +Proof. intros n f; apply (lm_gather (scatter f)). Qed. Lemma lm_scatter_equiv : forall {n} (f : E1 -> 'E2^n), (forall i, lin_map (scatter f i)) <-> lin_map f. -Proof. intros n f; apply (lm_gather_equiv (scatter f)). Qed. +Proof. intros n f; rewrite (lm_gather_equiv (scatter f)); easy. Qed. End Lin_map_Swap_Facts.