diff --git a/Lebesgue/UniformSpace_compl.v b/Lebesgue/UniformSpace_compl.v index c6df32bd9a77505c37cd8f48f03c6037e6086c06..e956f3e80e5bcb0db1212ca302fe5bed0d00ccf4 100644 --- a/Lebesgue/UniformSpace_compl.v +++ b/Lebesgue/UniformSpace_compl.v @@ -354,9 +354,6 @@ Qed. Lemma filterlim_Rloc_seq_r : forall x, filterlim (Rloc_seq_r x) eventually (at_right x). Proof. -assert (InvINRp1_pos : forall n : nat, 0 < / (INR n + 1)). -intros n; apply Rinv_0_lt_compat, INRp1_pos. -(* *) intros x. intros P [alpha H]. unfold Rloc_seq_r.