diff --git a/Lebesgue/measurable_fun-new.v b/Lebesgue/measurable_fun-new.v index 45266031777c4541f774f127fa68dc5d9bcfe174..0c2c7d3dd77cd54024645c275758dd7caa19e81d 100644 --- a/Lebesgue/measurable_fun-new.v +++ b/Lebesgue/measurable_fun-new.v @@ -29,38 +29,6 @@ Require Import Subset Subset_dec Subset_system_base measurable. Open Scope nat_scope. -Section compl1. - -Context {E F : Type}. (* Universes. *) - -Variable f : E -> F. (* Function. *) -Variable AE : E -> Prop. (* Subset. *) -Variable AF : F -> Prop. (* Subset. *) - -Inductive image : F -> Prop := Im : forall x, AE x -> image (f x). - -Definition preimage : E -> Prop := fun x => AF (f x). - -End compl1. - - -Section compl2. - -Context {E F : Type}. (* Universes. *) - -Variable f : E -> F. (* Function. *) -Variable PE : (E -> Prop) -> Prop. (* Subset system. *) -Variable PF : (F -> Prop) -> Prop. (* Subset system. *) - -(* From Lemma 524 p. 93 (v2) *) -Definition Image : (F -> Prop) -> Prop := fun AF => PE (preimage f AF). - -(* From Lemma 523 p. 93 (v2) *) -Definition Preimage : (E -> Prop) -> Prop := image (preimage f) PF. - -End compl2. - - Section Measurable_fun_Def. Context {E F : Type}. @@ -74,19 +42,15 @@ Definition measurable_fun : (E -> F) -> Prop := Lemma measurable_fun_ext : forall f g, same_fun f g -> measurable_fun f -> measurable_fun g. Proof. -intros f g H Hf AE HAE; induction HAE as [AF HAF]. -rewrite <- (preimage_ext_fun f); try easy. - - -intros f g H Hf A [B HB]; rewrite (proj2 HB); apply Hf. -exists B; split; try easy. -apply preimage_ext_fun; easy. +intros f g H Hf AE [AF HAF]. +rewrite <- (preimage_ext_fun f); try easy; apply Hf; easy. Qed. (* Lemma 526 p. 93 (v2) *) Lemma measurable_fun_cst : forall y, measurable_fun (fun _ => y). Proof. -intros y A [B HB]; destruct (in_dec B y). ; apply measurable_Prop. +intros y AE [AF HAF]; destruct (in_dec AF y) as [Hy | Hy]. +; apply measurable_Prop. Qed. (* Lemma 528 p. 94 *)