diff --git a/Lebesgue/Set_theory/Set_system/Set_system_base_def_base.v b/Lebesgue/Set_theory/Set_system/Set_system_base_def_base.v index 0b3780caf0a0a899cb4d313f4d66a13c2c3e1370..6436346a1b5b188b5f53ebef7fda2faf0c44bcaf 100644 --- a/Lebesgue/Set_theory/Set_system/Set_system_base_def_base.v +++ b/Lebesgue/Set_theory/Set_system/Set_system_base_def_base.v @@ -118,13 +118,11 @@ Variable A : set U. Inductive Subset : set_system U -> set_system U := | Sub : forall (P : set_system U) B, P B -> incl B A -> Subset P B. -Definition Lift : subset_system A -> set_system U := image (lift A). -Definition Lift' : subset_system A -> set_system U := fun PA B => PA (trace A B). +Definition Lift : subset_system A -> set_system U := liftp_any A. +Definition Lift_full : subset_system A -> set_system U := fun PA B => PA (trace A B). (* Definition 226 p. 40 (v3) *) -Definition Trace : set_system U -> subset_system A := image (trace A). -Inductive Trace' : set_system U -> subset_system A := - | Tr : forall (P : set_system U) B, P B -> Trace' P (trace A B). +Definition Trace : set_system U -> subset_system A := tracep_any A. End Trace_Def.