Skip to content
Snippets Groups Projects
Commit 4865fae2 authored by Sylvie Boldo's avatar Sylvie Boldo
Browse files

Réunion du 27/09/2021

parent d4bd8c3a
Branches
Tags
No related merge requests found
......@@ -41,7 +41,7 @@ Definition non_neg_part :=
Definition non_pos_part :=
fun (f : E -> Rbar) (x : E) => Rbar_max 0 (Rbar_opp (f x)).
(** integrale de Lebesgue *)
(** Lebesgue integrability and integral *)
Definition ex_LInt : (E -> Rbar) -> Prop := fun f =>
let f_p := non_neg_part f in
let f_m := non_pos_part f in
......@@ -83,6 +83,14 @@ replace (LInt_p mu (fun x : E => Rbar_max 0 (Rbar_opp (f x)))) with (Finite 0).
simpl; f_equal; ring.
Qed.
Lemma ex_LInt_equiv_abs :
forall f,
(ex_LInt f) <->
(measurable_fun gen gen_Rbar f /\
is_finite (LInt_p mu (fun t => Rbar_abs (f t)))).
Admitted.
End LInt_def.
(*
......
......@@ -29,9 +29,8 @@ Require Import LInt_p.
Require Import LInt.
Require Import measure_R.
Definition l_meas : measure gen_R := Borel_Lebesgue_measure.
Definition lambda : measure gen_R := Borel_Lebesgue_measure.
(* SB râle un peu sur "lambda" *)
Definition intcc : R -> R -> R -> Prop :=
fun a b x => a <= x /\ x <= b.
......@@ -40,7 +39,7 @@ Definition intcc : R -> R -> R -> Prop :=
Lemma LInt_calc_constant_aux :
forall a b c, a <= b -> (0 <= c) ->
LInt lambda (fun x => c * charac (intcc a b) x) = c * (b - a).
LInt l_meas (fun x => c * charac (intcc a b) x) = c * (b - a).
Proof.
intros a b c H1 H2.
rewrite LInt_eq_p; try easy.
......@@ -64,25 +63,82 @@ Qed.
Lemma LInt_calc_constant :
forall a b c, a <= b ->
LInt lambda (fun x => c * charac (intcc a b) x) = c * (b - a).
LInt l_meas (fun x => c * charac (intcc a b) x) = c * (b - a).
Proof.
intros a b c H.
(* séparer cas c >= 0 ou non *)
Admitted.
Lemma LInt_p_calc_identity_0_1 :
LInt_p l_meas (fun x:R => Rbar_mult x (charac (intcc 0 1) x)) = 1/2.
Proof.
assert (KR: inhabited R).
apply (inhabits 0%R).
pose (f:= (fun x0 : R => Rbar_mult x0 (charac (intcc 0 1) x0))); fold f.
assert (Hf1 : non_neg f).
admit.
assert (Hf2 : measurable_fun_Rbar gen_R f).
apply measurable_fun_when_charac with (f':= fun x => Finite x).
apply measurable_R_intcc.
intros t; easy.
intros A.
apply measurable_Rbar_R.
(* *)
rewrite <- LInt_p_with_mk_adapted_seq; try easy.
apply trans_eq with (Sup_seq (fun n => /2* (1-/pow 2 n))).
(* Question pow or powerRZ or .. ? *)
apply Sup_seq_ext.
intros n.
pose (Y:= (mk_adapted_seq_SF f Hf1 Hf2)).
rewrite LInt_p_SFp_eq with (Hf:=Y n); try easy.
unfold Y.
(*
unfold mk_adapted_seq_SF.
needs mk_adapted_seq_SF to be Defined instead of Qed *)
(* Stopped for now!
Very unpractical as the lists are awful to handle
=> not sure it is the good method...
Other solution: prove that \phi_n =
\Sum_{k=0}^{2^n-1} k/2^n *
charac(fun t => k/2^n <= t < (k+1)/2^n) +1_{x=1}
then \int \phi_n = \Sum \int (constant funs) = ...
=> maybe too compliacated for what it is worth
Other solution: FTA (and \int x = x^2/2)
Other solution by geometric transformations
(Fubini, or change of variable, or...)
*)
Admitted.
Lemma LInt_calc_identity_0_1 :
LInt lambda (fun x => x * charac (intcc 0 1) x) = 1/2.
LInt l_meas (fun x => x * charac (intcc 0 1) x) = 1/2.
Proof.
Admitted.
Lemma LInt_p_calc_identity :
forall a b, 0 <= a <= b ->
LInt_p lambda (fun x => x * charac (intcc a b) x) = (b - a) / 2.
LInt_p l_meas (fun x => x * charac (intcc a b) x) = (b - a) / 2.
Proof.
Admitted.
Lemma LInt_calc_identity :
forall a b, a <= b ->
LInt lambda (fun x => x * charac (intcc a b) x) = (b - a) / 2.
LInt l_meas (fun x => x * charac (intcc a b) x) = (b - a) / 2.
Proof.
Admitted.
......@@ -24,6 +24,7 @@ From Coq Require Import
Rdefinitions
Rbasic_fun
Raxioms
Reals
.
From Coquelicot Require Import
......@@ -53,6 +54,7 @@ Require Import
sigma_algebra
sigma_algebra_R_Rbar_new
subset_compl
LInt
.
Section BInt_to_LInt_p.
......@@ -554,4 +556,111 @@ Section BInt_to_LInt_p.
rewrite Rplus_comm => //.
Qed.
Lemma Bif_measurable {f : X -> R} :
bf : Bif μ f,
measurable_fun_R gen f.
Proof.
intros bf.
generalize (measurable_Bif bf).
unfold fun_Bif, measurable_fun_R.
intros H A HA.
apply H.
apply measurable_R_equiv_oo; easy.
Qed.
Lemma Bif_ex_LInt {f : X -> R} :
bf : Bif μ f,
ex_LInt μ f.
Proof.
intros bf.
apply ex_LInt_equiv_abs.
apply bf.
split.
apply measurable_fun_R_Rbar.
apply Bif_measurable; easy.
(* *)
generalize bf.
destruct bf; intros bf.
destruct (proj2 (ax_lim_l1 (mkposreal _ Rlt_0_1))) as (N,HN).
simpl in HN; rewrite Rplus_0_l in HN.
eapply Rbar_bounded_is_finite.
apply LInt_p_ge_0; try easy.
intros t; apply Rbar_abs_ge_0.
2: easy.
eapply LInt_p_monotone.
intros t.
replace (Finite (f t)) with
(Rbar_plus (Rbar_minus (f t) (seq N t)) (seq N t)).
2: apply sym_eq, Rbar_plus_minus_r; easy.
eapply Rbar_le_trans with (1:= Rbar_abs_triang _ _).
apply Rbar_le_refl.
rewrite LInt_p_plus; try easy;
try (intros t; apply Rbar_abs_ge_0).
assert (T1:is_finite ((LInt_p μ
(λ x : X,
Rbar_abs (Rbar_minus (f x) (seq N x)))))).
apply Rbar_bounded_is_finite with 0 1; try easy.
apply LInt_p_ge_0; try easy.
intros t; apply Rbar_abs_ge_0.
apply Rbar_lt_le.
replace (LInt_p μ (λ x : X,
Rbar_abs (Rbar_minus (f x) (seq N x)))) with (LInt_p μ
(λ x : X, ( f - seq N )%fn x)); try easy.
apply HN; auto with arith.
apply LInt_p_ext; intros t.
unfold fun_norm, norm; simpl.
unfold abs; simpl; f_equal; f_equal.
unfold fun_plus, fun_scal, opp; simpl.
unfold plus, scal, mult, one; simpl.
unfold mult; simpl; ring.
assert (T2: is_finite ((LInt_p μ (λ x : X, Rbar_abs (seq N x))))).
generalize (integrable_sf_norm (ax_int N)).
intros K; generalize (Bif_integrable_sf ax_notempty K).
intros K'; generalize (is_finite_LInt_p_Bif K').
unfold fun_Bif, fun_norm.
(*rewrite (fun_sf_norm (seq N) x).*)
(* problème de réécriture sous le lambda ! *)
(*rewrite <- BInt_LInt_p_eq.
BInt_sf_LInt_SFp*)
admit. (* dur *)
rewrite <- T1, <- T2; easy.
(* *)
apply measurable_fun_abs.
apply measurable_fun_plus.
apply measurable_fun_R_Rbar.
apply Bif_measurable; easy.
apply measurable_fun_opp.
apply measurable_fun_R_Rbar.
apply Bif_measurable.
apply Bif_integrable_sf; easy.
intros t; easy.
apply measurable_fun_abs.
apply measurable_fun_R_Rbar.
apply Bif_measurable.
apply Bif_integrable_sf; easy.
Admitted.
Lemma BInt_LInt_eq {f : X -> R} :
bf : Bif μ f,
BInt bf = LInt μ f.
Proof.
intros bf.
unfold LInt.
(*rewrite <- BInt_LInt_p_eq.*)
Admitted.
End BInt_to_LInt_p.
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment