diff --git a/Lebesgue/Set_theory/Set_base.v b/Lebesgue/Set_theory/Set_base.v index 2e6cbbe37ea731334708ae4f4d564c85beae9105..03c4470e10ea652da42ecb9dc1a8832594796728 100644 --- a/Lebesgue/Set_theory/Set_base.v +++ b/Lebesgue/Set_theory/Set_base.v @@ -121,21 +121,12 @@ Qed. Lemma lift_trace_lift : compose3 (lift A) (trace A) (lift A) = lift A. Proof. -unfold compose3; rewrite trace_lift. - -intros; rewrite trace_lift; easy. -Qed. - -Lemma lift_trace_lift : - forall (BA : subset A), lift A (trace A (lift A BA)) = lift A BA. -Proof. -intros; rewrite trace_lift; easy. +unfold compose3; rewrite trace_lift; easy. Qed. -Lemma trace_lift_trace : - forall (B : set U), trace A (lift A (trace A B)) = trace A B. +Lemma trace_lift_trace : compose3 (trace A) (lift A) (trace A) = trace A. Proof. -intros; rewrite trace_lift; easy. +rewrite compose_assoc, trace_lift; easy. Qed. End Prop_Facts0b. @@ -2076,16 +2067,16 @@ intros Hx3; rewrite (proof_irrelevance _ _ Hx1); auto. Qed. Lemma trace_equiv : - forall (A : set U) (BA : subset A) (B : set U), + forall (A B : set U) (BA : subset A), BA = trace A B <-> inter A B = lift A BA. Proof. -intros A BA B; split; intros HBA. -rewrite HBA, lift_trace; easy. +intros A B BA; split; intros H. +rewrite H, <- lift_trace; easy. apply set_ext_equiv; split; intros [x Hx1] Hx2. -apply (inter_lb_r A _ x); rewrite HBA; apply Lft with Hx1; easy. +apply (inter_lb_r A _ x); rewrite H; apply Lft with Hx1; easy. apply lift_rev. replace (fun s => BA s) with BA; try easy. (* FIXME: why? *) -rewrite <- HBA; easy. +rewrite <- H; easy. Qed. Lemma trace_empty_equiv : @@ -2139,12 +2130,12 @@ Qed. Lemma trace_fullset_l : forall (B : set U), lift fullset (trace fullset B) = B. Proof. -intros; rewrite lift_trace; apply inter_fullset_l. +intros; rewrite <- (compose_eq (lift _)), lift_trace; apply inter_fullset_l. Qed. Lemma trace_fullset_r_alt : forall (A : set U), lift A (trace A fullset) = A. Proof. -intros; rewrite lift_trace; apply inter_fullset_r. +intros; rewrite <- (compose_eq (lift _)), lift_trace; apply inter_fullset_r. Qed. Lemma trace_fullset_r : forall (A : set U), trace A fullset = fullset.