From 4b220c915a2d865ca99f7a641f3300112acb9d65 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fran=C3=A7ois=20Cl=C3=A9ment?= <francois.clement@inria.fr> Date: Fri, 2 Feb 2024 23:38:25 +0100 Subject: [PATCH] Proof of filterP_cast_ord_incrF. WIP: filterP_ord_incrF_S. --- FEM/Algebra/ord_compl.v | 38 ++++++++++++++++++++++++++++++++------ 1 file changed, 32 insertions(+), 6 deletions(-) diff --git a/FEM/Algebra/ord_compl.v b/FEM/Algebra/ord_compl.v index cb6faa36..1ea1d80e 100644 --- a/FEM/Algebra/ord_compl.v +++ b/FEM/Algebra/ord_compl.v @@ -2275,14 +2275,40 @@ Lemma unfilterP_ord_inj : unfilterP_ord HP0 i = unfilterP_ord HP0 j -> i = j. Proof. move=>> Hi Hj; apply enum_rank_in_inj; apply /asboolP; easy. Qed. +Lemma filterP_ord_incrF_S : + forall {n} (P : 'I_n -> Prop), incrF_S (fun j : 'I_(lenPF P) => filterP_ord j). +Proof. +intros n P j Hj1. + + +(* +destruct (lt_eq_lt_dec (filterP_ord j1) (filterP_ord j2)) + as [[H | H] | H]; [easy | exfalso..]. +apply ord_inj, filterP_ord_inj in H; subst; contradict Hj; apply Nat.lt_irrefl. +*) + +(* +enum_val +nth sorted + +mem : pT -> mem_pred T +enum_mem : mem_pred T -> seq T := filter Finite.enum mA +enum A := (enum_mem (mem A)) +enum_val : 'I_#|[eta A]| -> T := nth (enum_default i) (enum A) i +enum_rank : T -> 'I_#|[eta T]| := enum_rank_in (erefl true) x +enum_rank_in : x0 \in A -> T -> 'I_#|[eta A]| + +nth_image : nth y0 [seq f x | x in A] i = f (enum_val i) +enum_val_nth : enum_val i = nth x (enum A) i +enum_valK : cancel enum_val enum_rank +enum_rankK : cancel enum_rank enum_val +nth_codom : nth y0 (codom f) i = f (enum_val i) +*) +Admitted. + Lemma filterP_ord_incrF : forall {n} (P : 'I_n -> Prop), incrF (fun j : 'I_(lenPF P) => filterP_ord j). -Proof. -intros n P j1 j2 Hj. - - - -Admitted. +Proof. intros; apply incrF_equiv, filterP_ord_incrF_S. Qed. Lemma filterP_cast_ord_incrF : forall {n1 n2} {P1 : 'I_n1 -> Prop} {P2 : 'I_n2 -> Prop} -- GitLab