diff --git a/Algebra/Finite_dim/Finite_dim_AS_aff_indep.v b/Algebra/Finite_dim/Finite_dim_AS_aff_indep.v index 08f02a952c959ac3ac2025e12920776f6f042e74..ad41a40abed1e079c6f712426f7d2bc20edeba87 100644 --- a/Algebra/Finite_dim/Finite_dim_AS_aff_indep.v +++ b/Algebra/Finite_dim/Finite_dim_AS_aff_indep.v @@ -86,6 +86,37 @@ Proof. intros; split; [intros; apply aff_indep_all; easy | intros H; apply H]. Qed. +Lemma aff_indep_lin_indep : + forall {n} {A : 'E^n.+1} i0, lin_indep (frameF A i0) -> aff_indep A. +Proof. move=> n A i0 /(aff_indep_any i0 ord0); easy. Qed. + +Lemma aff_indep_lin_indep_rev : + forall {n} {A : 'E^n.+1} i0, aff_indep A -> lin_indep (frameF A i0). +Proof. move=>>; apply aff_indep_any. Qed. + +Lemma aff_indep_lin_indep_equiv : + forall {n} {A : 'E^n.+1} i0, aff_indep A <-> lin_indep (frameF A i0). +Proof. +intros; split; [apply aff_indep_lin_indep_rev | apply aff_indep_lin_indep]. +Qed. + +Lemma lin_indep_aff_indep_equiv : + forall {n} {u : 'V^n} (O : E) i0, + lin_indep u <-> aff_indep (inv_frameF O u i0). +Proof. +intros n u O i0. rewrite (aff_indep_lin_indep_equiv i0) frameF_inv_frameF//. +Qed. + +Lemma lin_indep_aff_indep : + forall {n} {u : 'V^n} (O : E) i0, + aff_indep (inv_frameF O u i0) -> lin_indep u. +Proof. move=>>; apply lin_indep_aff_indep_equiv. Qed. + +Lemma lin_indep_aff_indep_rev : + forall {n} {u : 'V^n} (O : E) i0, + lin_indep u -> aff_indep (inv_frameF O u i0). +Proof. move=>>; apply lin_indep_aff_indep_equiv. Qed. + Lemma aff_dep_any : forall {n} {A : 'E^n.+1} i0, (exists i, lin_dep (frameF A i)) -> lin_dep (frameF A i0). @@ -119,7 +150,8 @@ Qed. Lemma aff_indep_decomp_uniq_rev : forall {n} {A : 'E^n.+1}, baryc_injL A -> aff_indep A. Proof. -intros n A HA L HL. +intros n A HA L HL; pose (L1 := part1F0 L). +