diff --git a/Lebesgue/Set_theory/Set_def_fun_base.v b/Lebesgue/Set_theory/Set_def_fun_base.v index 2ac181195878cf8d484c4d266abfef2cf2b064f6..2987aaf5e40c20f88d5fc44846b4ca81582750e3 100644 --- a/Lebesgue/Set_theory/Set_def_fun_base.v +++ b/Lebesgue/Set_theory/Set_def_fun_base.v @@ -40,10 +40,10 @@ End Fun_Base_Def1. Section Fun_Base_Def2a. Context {U1 U2 U3 : Type}. (* Universes. *) -Variable f23 : U2 -> U3. -Variable f12 : U1 -> U2. +Variable f32 : U2 -> U3. +Variable f21 : U1 -> U2. -Definition compose : U1 -> U3 := fun x1 => f23 (f12 x1). +Definition compose : U1 -> U3 := fun x1 => f32 (f21 x1). End Fun_Base_Def2a. @@ -51,11 +51,11 @@ End Fun_Base_Def2a. Section Fun_Base_Def2b. Context {U1 U2 U3 U4 : Type}. (* Universes. *) -Variable f34 : U3 -> U4. -Variable f23 : U2 -> U3. -Variable f12 : U1 -> U2. +Variable f43 : U3 -> U4. +Variable f32 : U2 -> U3. +Variable f21 : U1 -> U2. -Definition compose3 : U1 -> U4 := compose f34 (compose f23 f12). +Definition compose3 : U1 -> U4 := compose f43 (compose f32 f21). End Fun_Base_Def2b. diff --git a/Lebesgue/Set_theory/Set_fun.v b/Lebesgue/Set_theory/Set_fun.v index d24f5189bfde44fbe48586a271f7a0b4f96fef05..c7c00b249da89de7c29e8130254b7857f4b1deb2 100644 --- a/Lebesgue/Set_theory/Set_fun.v +++ b/Lebesgue/Set_theory/Set_fun.v @@ -106,41 +106,41 @@ Section Fun_Facts2. (** Facts about composition of functions. *) Context {U1 U2 U3 U4 : Type}. -Variable f12 : U1 -> U2. -Variable f23 : U2 -> U3. -Variable f34 : U3 -> U4. +Variable f21 : U1 -> U2. +Variable f32 : U2 -> U3. +Variable f43 : U3 -> U4. (* Useful? *) Lemma compose_assoc : - compose3 f34 f23 f12 = compose (compose f34 f23) f12. -Proof. + compose3 f43 f32 f21 = compose (compose f43 f32) f21. +Proof easy. Qed. Lemma image_compose_fun : - image (compose f23 f12) = fun A1 => image f23 (image f12 A1). + image (compose f32 f11) = fun A1 => image f32 (image f21 A1). Proof. apply fun_ext; intros A1; apply set_ext_equiv; split; intros x3 Hx3. induction Hx3 as [x1 Hx1]; easy. induction Hx3 as [x2 Hx2], Hx2 as [x1 Hx1]. -replace (f23 (f12 x1)) with (compose f23 f12 x1); easy. +replace (f32 (f21 x1)) with (compose f32 f21 x1); easy. Qed. Lemma image_compose : - forall A1, image (compose f23 f12) A1 = image f23 (image f12 A1). + forall A1, image (compose f32 f21) A1 = image f32 (image f21 A1). Proof. rewrite image_compose_fun; easy. Qed. (* Useful? *) Lemma preimage_compose_fun : - preimage (compose f23 f12) = fun A3 => preimage f12 (preimage f23 A3). + preimage (compose f32 f21) = fun A3 => preimage f21 (preimage f32 A3). Proof. easy. Qed. Lemma preimage_compose : - forall A3, preimage (compose f23 f12) A3 = preimage f12 (preimage f23 A3). + forall A3, preimage (compose f32 f21) A3 = preimage f21 (preimage f32 A3). Proof. easy. Qed. diff --git a/Lebesgue/Set_theory/Set_system/Set_system_base_base.v b/Lebesgue/Set_theory/Set_system/Set_system_base_base.v index 261afbb4ed414c1e5668d03ba869fdd21e98c82d..f01ed42f738581fe4ec7d5aebc0f58cde5a0ae11 100644 --- a/Lebesgue/Set_theory/Set_system/Set_system_base_base.v +++ b/Lebesgue/Set_theory/Set_system/Set_system_base_base.v @@ -451,22 +451,22 @@ End Image_Preimage_Facts1. Section Image_Preimage_Facts2. Context {U1 U2 U3 : Type}. -Variable f12 : U1 -> U2. -Variable f23 : U2 -> U3. +Variable f21 : U1 -> U2. +Variable f32 : U2 -> U3. Lemma Image_compose : - forall P1, Image (compose f23 f12) P1 = Image f23 (Image f12 P1). + forall P1, Image (compose f32 f21) P1 = Image f32 (Image f21 P1). Proof. intros; unfold Image; set_unfold; easy. Qed. Lemma Preimage_compose : - forall P3, Preimage (compose f23 f12) P3 = Preimage f12 (Preimage f23 P3). + forall P3, Preimage (compose f32 f21) P3 = Preimage f21 (Preimage f32 P3). Proof. intros P3; unfold Preimage; set_ext_auto A1 HA1; induction HA1 as [A3 HA3]. rewrite preimage_compose; repeat apply Im; easy. induction HA3 as [A3 HA3]; unfold preimagep_any; rewrite preimage_compose_fun. -apply Im with (f := fun A => preimage f12 (preimage f23 A)); easy. +apply Im with (f := fun A => preimage f21 (preimage f32 A)); easy. Qed. End Image_Preimage_Facts2.