diff --git a/Lebesgue/Subset.v b/Lebesgue/Subset.v index c858914cf5770893080595ccac047dbfb2e87a8b..23b220013c3707005fd624b4e96bc77f0176ff11 100644 --- a/Lebesgue/Subset.v +++ b/Lebesgue/Subset.v @@ -852,35 +852,35 @@ Qed. (** Distributivity. *) -Lemma distrib_union_union_l : +Lemma union_union_distr_l : forall (A B C : U -> Prop), union A (union B C) = union (union A B) (union A C). Proof. intros; rewrite subset_ext_equiv; split; subset_auto. Qed. -Lemma distrib_union_union_r : +Lemma union_union_distr_r : forall (A B C : U -> Prop), union (union A B) C = union (union A C) (union B C). Proof. intros; rewrite subset_ext_equiv; split; subset_auto. Qed. -Lemma distrib_union_inter_l : +Lemma union_inter_distr_l : forall (A B C : U -> Prop), union A (inter B C) = inter (union A B) (union A C). Proof. intros; rewrite subset_ext_equiv; split; subset_auto. Qed. -Lemma distrib_union_inter_r : +Lemma union_inter_distr_r : forall (A B C : U -> Prop), union (inter A B) C = inter (union A C) (union B C). Proof. intros; rewrite subset_ext_equiv; split; subset_auto. Qed. -Lemma distrib_union_inter : +Lemma union_inter : forall (A B C D : U -> Prop), union (inter A B) (inter C D) = inter (inter (union A C) (union B C)) (inter (union A D) (union B D)). @@ -888,21 +888,21 @@ Proof. intros; rewrite subset_ext_equiv; split; subset_auto. Qed. -Lemma distrib_inter_union_l : +Lemma inter_union_distr_l : forall (A B C : U -> Prop), inter A (union B C) = union (inter A B) (inter A C). Proof. intros; rewrite subset_ext_equiv; split; subset_auto. Qed. -Lemma distrib_inter_union_r : +Lemma inter_union_distr_r : forall (A B C : U -> Prop), inter (union A B) C = union (inter A C) (inter B C). Proof. intros; rewrite subset_ext_equiv; split; subset_auto. Qed. -Lemma distrib_inter_union : +Lemma inter_union : forall (A B C D : U -> Prop), inter (union A B) (union C D) = union (union (inter A C) (inter B C)) (union (inter A D) (inter B D)). @@ -910,14 +910,14 @@ Proof. intros; rewrite subset_ext_equiv; split; subset_auto. Qed. -Lemma distrib_inter_inter_l : +Lemma inter_inter_distr_l : forall (A B C : U -> Prop), inter A (inter B C) = inter (inter A B) (inter A C). Proof. intros; rewrite subset_ext_equiv; split; subset_auto. Qed. -Lemma distrib_inter_inter_r : +Lemma inter_inter_distr_r : forall (A B C : U -> Prop), inter (inter A B) C = inter (inter A C) (inter B C). Proof. @@ -931,7 +931,7 @@ Proof. intros A B H1 H2 H3; rewrite disj_equiv_def in H1, H3. contradict H2; apply empty_emptyset. rewrite <- (inter_full_l B). -rewrite <- (union_compl_l A), distrib_inter_union_r, H1, H3. +rewrite <- (union_compl_l A), inter_union_distr_r, H1, H3. now apply empty_union. Qed. @@ -1161,28 +1161,28 @@ Proof. intros; subset_ext_auto x. Qed. -Lemma diff_union_l : +Lemma diff_union_distr_l : forall (A B C : U -> Prop), diff (union A B) C = union (diff A C) (diff B C). Proof. intros; subset_ext_auto. Qed. -Lemma diff_union_r : +Lemma diff_union_distr_r : forall (A B C : U -> Prop), diff A (union B C) = inter (diff A B) (diff A C). Proof. intros; subset_ext_auto. Qed. -Lemma diff_inter_l : +Lemma diff_inter_distr_l : forall (A B C : U -> Prop), diff (inter A B) C = inter (diff A C) (diff B C). Proof. intros; subset_ext_auto. Qed. -Lemma diff_inter_r : +Lemma diff_inter_distr_r : forall (A B C : U -> Prop), diff A (inter B C) = union (diff A B) (diff A C). Proof. @@ -1231,14 +1231,14 @@ Proof. intros; subset_ext_auto x. Qed. -Lemma distrib_inter_diff_l : +Lemma inter_diff_distr_l : forall (A B C : U -> Prop), inter A (diff B C) = diff (inter A B) (inter A C). Proof. intros; subset_ext_auto. Qed. -Lemma distrib_inter_diff_r : +Lemma inter_diff_distr_r : forall (A B C : U -> Prop), inter (diff A B) C = diff (inter A C) (inter B C). Proof. @@ -1444,7 +1444,7 @@ Proof. intros; subset_ext_auto x. Qed. -Lemma super_distrib_union_sym_diff_l : +Lemma union_sym_diff_super_distr_l : forall (A B C : U -> Prop), incl (sym_diff (union A C) (union B C)) (union (sym_diff A B) C). @@ -1452,7 +1452,7 @@ Proof. intros; subset_auto. Qed. -Lemma super_distrib_union_sym_diff_r : +Lemma union_sym_diff_super_distr_r : forall (A B C : U -> Prop), incl (sym_diff (union A B) (union A C)) (union A (sym_diff B C)). @@ -1460,7 +1460,7 @@ Proof. intros; subset_auto. Qed. -Lemma super_distrib_union_sym_diff : +Lemma union_sym_diff_super_distr : forall (A B C D : U -> Prop), incl (sym_diff (union A C) (union B D)) (union (sym_diff A B) (sym_diff C D)). @@ -1468,7 +1468,7 @@ Proof. intros; subset_auto. Qed. -Lemma sub_distrib_sym_diff_union_l : +Lemma sym_diff_union_sub_distr_l : forall (A B C : U -> Prop), incl (sym_diff (union A B) C) (union (sym_diff A C) (sym_diff B C)). @@ -1476,7 +1476,7 @@ Proof. intros; subset_auto. Qed. -Lemma sub_distrib_sym_diff_union_r : +Lemma sym_diff_union_sub_distr_r : forall (A B C : U -> Prop), incl (sym_diff A (union B C)) (union (sym_diff A B) (sym_diff A C)). @@ -1484,7 +1484,7 @@ Proof. intros; subset_auto. Qed. -Lemma sub_distrib_sym_diff_union : +Lemma sym_diff_union_sub_distr : forall (A B C D : U -> Prop), incl (sym_diff (union A B) (union C D)) (union (sym_diff A C) (sym_diff B D)). @@ -1495,21 +1495,21 @@ Qed. (* ((U -> Prop) -> Prop, sym_diff, inter) is a Boolean ring, ie an abelian ring with fullset as neutral for intersection. *) -Lemma distrib_inter_sym_diff_l : +Lemma inter_sym_diff_distr_l : forall (A B C : U -> Prop), inter (sym_diff A B) C = sym_diff (inter A C) (inter B C). Proof. intros; subset_ext_auto. Qed. -Lemma distrib_inter_sym_diff_r : +Lemma inter_sym_diff_distr_r : forall (A B C : U -> Prop), inter A (sym_diff B C) = sym_diff (inter A B) (inter A C). Proof. intros; subset_ext_auto. Qed. -Lemma distrib_inter_sym_diff : +Lemma inter_sym_diff_distr : forall (A B C D : U -> Prop), inter (sym_diff A B) (sym_diff C D) = sym_diff (sym_diff (inter A C) (inter A D)) @@ -1518,7 +1518,7 @@ Proof. intros; subset_ext_auto. Qed. -Lemma super_distrib_sym_diff_inter_l : +Lemma sym_diff_inter_super_distr_l : forall (A B C : U -> Prop), incl (inter (sym_diff A C) (sym_diff B C)) (sym_diff (inter A B) C). @@ -1526,7 +1526,7 @@ Proof. intros; subset_auto. Qed. -Lemma super_distrib_sym_diff_inter_r : +Lemma sym_diff_inter_super_distr_r : forall (A B C : U -> Prop), incl (inter (sym_diff A B) (sym_diff A C)) (sym_diff A (inter B C)). @@ -1534,7 +1534,7 @@ Proof. intros; subset_auto. Qed. -Lemma super_distrib_sym_diff_inter : +Lemma sym_diff_inter_super_distr : forall (A B C D : U -> Prop), incl (inter (inter (sym_diff A C) (sym_diff A D)) (inter (sym_diff B C) (sym_diff B D))) @@ -1631,7 +1631,7 @@ Lemma inter_partition_compat_l : partition A B C -> partition (inter D A) (inter D B) (inter D C). Proof. intros A B C D [H1 H2]; split. -rewrite H1; apply distrib_inter_union_l. +rewrite H1; apply inter_union_distr_l. now apply inter_disj_compat_l. Qed.