diff --git a/FEM/finite_element.v b/FEM/finite_element.v index 797bc3c116ec432db9868f000d231e38b226f039..02d7461b0da6954840f9e40b3665154c4285fbdd 100644 --- a/FEM/finite_element.v +++ b/FEM/finite_element.v @@ -462,23 +462,30 @@ apply LagQ1_kron. Qed. (* TODO: Not really! we should add some hypothesis on x_i *) +(* ajouter une hyp qu'on est dans l'element de ref *) Lemma LagPQ_is_non_neg : forall (i : 'I_nnvtx) (x : 'R^dd), - 0 <= LagPQ i x. + K_geom_ref x -> 0 <= LagPQ i x. Proof. -intros i x; unfold LagPQ. +intros i x Hx; unfold LagPQ. case (nvtx_dec FE_ref); intros H. apply LagP1_is_non_neg. -apply LagQ1_is_non_neg; easy. -Qed. - +unfold K_geom_ref, K_geom in Hx. +unfold dd. +admit. +admit. +(*apply LagQ1_is_non_neg; easy. +Qed.*) +Admitted. + (* TODO verify if this lemma is true, we apply it to T_geom_is_bij_id *) Lemma LagPQ_sum_1 : forall x, comb_lin (fun i : 'I_nnvtx => LagPQ i x)(fun _ => 1) = 1. Proof. +(* intros x. unfold LagPQ. case (nvtx_dec FE_ref); intros H. -admit. +admit.*) (*apply LagP1_sum_1. apply LagQ1_sum_1.*) @@ -767,6 +774,7 @@ unfold range; intros x_cur H. apply K_geom_ref_correct; easy. (* *) intros i; apply LagPQ_is_non_neg. +(* apply LagPQ_sum_1. (* *) unfold identity; intros x_cur H; symmetry. @@ -774,7 +782,8 @@ apply T_geom_comp; easy. (* *) unfold identity; intros x_ref H; symmetry. apply T_geom_inv_comp; easy. -Qed. +Qed.*) +Admitted. Lemma theta_cur_correct : forall i : 'I_(ndof FE_cur), theta_ref i = cur_to_ref (theta_cur i). diff --git a/FEM/poly_Lagrange.v b/FEM/poly_Lagrange.v index 63f0e324c747e3d2595d795c1314a1ab9107d91b..7d703783ecf4f057d5e65ba46fc231ddac972e66 100644 --- a/FEM/poly_Lagrange.v +++ b/FEM/poly_Lagrange.v @@ -107,9 +107,9 @@ Admitted. (* TODO: Faut des hypothèses de plus sur x_i > 0 *) Lemma LagP1_is_non_neg : forall (i : 'I_d.+1) (x : 'R^d), - 0 <= LagP1 i x. + convex_envelop d.+1 vtxP1 x -> 0 <= LagP1 i x. Proof. -intros i x; unfold LagP1. +intros i x Hx; unfold LagP1. Admitted. Lemma LagP1_sum_1 : forall x, @@ -160,9 +160,9 @@ Proof. Admitted. Lemma LagQ1_is_non_neg : forall (i : 'I_(2 ^ d)) (x : 'R^d), - 0 <= LagQ1 i x. + convex_envelop (2^d) vtxQ1 x -> 0 <= LagQ1 i x. Proof. -intros i x; unfold LagQ1. +intros i x Hx; unfold LagQ1. Admitted.