diff --git a/Lebesgue/Set_theory/Set_system/Set_system_base_finite.v b/Lebesgue/Set_theory/Set_system/Set_system_base_finite.v index be412d473aa26cf314dc5a7994eebaab3a5e892f..53203eea2d3748b0c1fbfd188eced39300edd72e 100644 --- a/Lebesgue/Set_theory/Set_system/Set_system_base_finite.v +++ b/Lebesgue/Set_theory/Set_system/Set_system_base_finite.v @@ -271,7 +271,7 @@ Qed. Lemma Inter_finite_closure_Gen : Incl P (Inter_finite_closure P). Proof. intros A HA; replace A with (cst_seq A 0) by easy. -rewrite <- (inter_finite_0 (cst_seq A)); easy. +rewrite <- (inter_finite_0 (cst_seq A)); apply Ifc; easy. Qed. Lemma Union_finite_closure_Gen : Incl P (Union_finite_closure P). @@ -282,7 +282,11 @@ Qed. Lemma Inter_finite_closure_Inter : Inter (Inter_finite_closure P). Proof. -intros C D [A NA HA] [B NB HB]; clear C D. +intros C D [ | A NA HA] [ | B NB HB]; clear C D. +1,2: rewrite inter_fullset_l. +3: rewrite inter_fullset_r. +apply Ifc_full. +1,2: apply Ifc; easy. rewrite inter_inter_finite_distr; apply Ifc. intros n Hn; apply append_in with (M := NB); try easy; lia. Qed.