diff --git a/Lebesgue/Set_theory/Set_fun.v b/Lebesgue/Set_theory/Set_fun.v index c7c00b249da89de7c29e8130254b7857f4b1deb2..52cf017ca71146fc02c4c0dfdf59ad6402b0307a 100644 --- a/Lebesgue/Set_theory/Set_fun.v +++ b/Lebesgue/Set_theory/Set_fun.v @@ -106,19 +106,36 @@ Section Fun_Facts2. (** Facts about composition of functions. *) Context {U1 U2 U3 U4 : Type}. -Variable f21 : U1 -> U2. -Variable f32 : U2 -> U3. Variable f43 : U3 -> U4. +Variable f32 : U2 -> U3. +Variable f21 : U1 -> U2. + +Lemma compose_eq : forall (x1 : U1), compose f32 f21 x1 = f32 (f21 x1). +Proof. +easy. +Qed. (* Useful? *) Lemma compose_assoc : compose3 f43 f32 f21 = compose (compose f43 f32) f21. -Proof +Proof. +easy. +Qed. + +(* Useful? *) +Lemma compose_id_l : compose id f21 = f21. +Proof. +easy. +Qed. + +(* Useful? *) +Lemma compose_id_r : compose f32 id = f32. +Proof. easy. Qed. Lemma image_compose_fun : - image (compose f32 f11) = fun A1 => image f32 (image f21 A1). + image (compose f32 f21) = fun A1 => image f32 (image f21 A1). Proof. apply fun_ext; intros A1; apply set_ext_equiv; split; intros x3 Hx3. induction Hx3 as [x1 Hx1]; easy.