diff --git a/Lebesgue/Set_theory/Set_system/Topology.v b/Lebesgue/Set_theory/Set_system/Topology.v index abee35450f11e42d254161891724d852c0fb7940..6b658d8ee1d465360a72c88c3fec9e4942bbf650 100644 --- a/Lebesgue/Set_theory/Set_system/Topology.v +++ b/Lebesgue/Set_theory/Set_system/Topology.v @@ -74,13 +74,10 @@ Lemma all_is_Basisf : is_Basisf T (skolem T). Proof. split. intros [x Hx]; easy. -(* -intros A HA; exists (fun i => incl (proj1_sig i) A). -apply set_ext_equiv; split; intros x Hx. -exists (exist _ _ HA); split; easy. -destruct Hx as [[A' HA'] [Hx1 Hx2]]; apply Hx1, Hx2. -*) -Admitted. +intros A HA; apply set_ext_equiv; split; intros x. +intros; exists (exist _ _ HA); easy. +intros [[B HB1] [HB2 HB3]]; auto. +Qed. Lemma all_is_Basisp : is_Basisp T T. Proof. @@ -92,42 +89,19 @@ Qed. Variable fB : Idx -> set U. +(* Useful? *) Lemma Basisf_to_Basisp : is_Basisf T fB -> is_Basisp T (unskolem fB). Proof. -intros [HfB1 HfB2]; split. -intros B [i]; auto. -(* -intros A HA; destruct (HfB2 A HA) as [P HP]; rewrite HP. -rewrite unionf_any_unionp_any_eq. -apply set_ext_equiv; split; intros x Hx. -(* *) -destruct Hx as [B [HB1 HB]]; induction HB1 as [i]; destruct HB as [HB1 HB2]. -exists (fB i); repeat split; try easy. -intros y Hy; exists (fB i); split; try easy. -apply unskolem_equiv; exists i; symmetry; apply inter_full_l; easy. -(* *) -destruct Hx as [B [[HB0 HB1] HB2]]; induction HB0 as [i]; auto. -*) -Admitted. +apply (proj1 (is_Basisf_is_Basisp_equiv _ _)). +Qed. Variable PB : set_system U. +(* Useful? *) Lemma Basisf_of_Basisp : is_Basisp T PB -> is_Basisf T (skolem PB). Proof. -intros [HPB1 HPB2]; split. -intros i; apply HPB1, skolem_correct; exists i; easy. -(* -intros A HA; exists (fun i => incl (skolem PB i) A). -rewrite (HPB2 _ HA), unionp_any_unionf_any_eq. -apply set_ext_equiv; split; intros x Hx. -(* *) -destruct Hx as [[B HB] Hx]; simpl in Hx. -exists (exist _ _ (proj1 HB)); split; try easy. -intros y Hy; simpl in Hy; exists (exist _ B HB); easy. -(* *) -destruct Hx as [[B HB] [Hx1 Hx2]]; auto. -*) -Admitted. +apply (proj1 (is_Basisp_is_Basisf_equiv _ _)). +Qed. Context {U1 U2 : Type}. Variable T1 : set_system U1.