From b4ca8122873a530348368bec50d72d334f966001 Mon Sep 17 00:00:00 2001 From: Pierre Rousselin <rousselin@math.univ-paris13.fr> Date: Fri, 3 Nov 2023 11:38:30 +0100 Subject: [PATCH] Remove the <8.16 compatibility lemmas --- LM/R_compl.v | 51 ---------------------------------------------- Lebesgue/R_compl.v | 50 --------------------------------------------- 2 files changed, 101 deletions(-) diff --git a/LM/R_compl.v b/LM/R_compl.v index 52a6b4b9..dddb29b4 100644 --- a/LM/R_compl.v +++ b/LM/R_compl.v @@ -21,57 +21,6 @@ From Coquelicot Require Export Coquelicot. Open Scope R_scope. -(* pris de la lib std en attendant 8.16 pour tout le monde *) - -Lemma Rinv_1 : / 1 = 1. -Proof. - field. -Qed. - -Lemma Rinv_0 : / 0 = 0. -Proof. -rewrite RinvImpl.Rinv_def. -case Req_appart_dec. -- easy. -- intros [H|H] ; elim Rlt_irrefl with (1 := H). -Qed. - -Lemma Rinv_inv r : / / r = r. -Proof. -destruct (Req_dec r 0) as [->|H]. -- rewrite Rinv_0. - apply Rinv_0. -- now field. -Qed. - -Lemma Rinv_mult r1 r2 : / (r1 * r2) = / r1 * / r2. -Proof. -destruct (Req_dec r1 0) as [->|H1]. -- rewrite Rinv_0, 2!Rmult_0_l. - apply Rinv_0. -- destruct (Req_dec r2 0) as [->|H2]. - + rewrite Rinv_0, 2!Rmult_0_r. - apply Rinv_0. - + now field. -Qed. - -Lemma pow_inv x n : (/ x) ^ n = / x ^ n. -Proof. -induction n as [|n IH] ; simpl. -- apply eq_sym, Rinv_1. -- rewrite Rinv_mult. - now apply f_equal. -Qed. - -Lemma Rsqr_div' x y : Rsqr (x / y) = Rsqr x / Rsqr y. -Proof. - unfold Rsqr, Rdiv. - rewrite Rinv_mult. - ring. -Qed. - -(* fin des lemmes pris de 8.16 *) - Section RC. (* TODO: découper cette section *) Lemma Runbounded (y : R) : exists (x : R), x > y. diff --git a/Lebesgue/R_compl.v b/Lebesgue/R_compl.v index 3b8ff676..d71623e0 100644 --- a/Lebesgue/R_compl.v +++ b/Lebesgue/R_compl.v @@ -22,56 +22,6 @@ From Lebesgue Require Import logic_compl. Section R_ring_compl. -(* pris de la lib std en attendant 8.16 pour tout le monde *) - -Lemma Rinv_1 : / 1 = 1. -Proof. - field. -Qed. - -Lemma Rinv_0 : / 0 = 0. -Proof. -rewrite RinvImpl.Rinv_def. -case Req_appart_dec. -- easy. -- intros [H|H] ; elim Rlt_irrefl with (1 := H). -Qed. - -Lemma Rinv_inv r : / / r = r. -Proof. -destruct (Req_dec r 0) as [->|H]. -- rewrite Rinv_0. - apply Rinv_0. -- now field. -Qed. - -Lemma Rinv_mult r1 r2 : / (r1 * r2) = / r1 * / r2. -Proof. -destruct (Req_dec r1 0) as [->|H1]. -- rewrite Rinv_0, 2!Rmult_0_l. - apply Rinv_0. -- destruct (Req_dec r2 0) as [->|H2]. - + rewrite Rinv_0, 2!Rmult_0_r. - apply Rinv_0. - + now field. -Qed. - -Lemma pow_inv x n : (/ x)^n = / x^n. -Proof. -induction n as [|n IH] ; simpl. -- apply eq_sym, Rinv_1. -- rewrite Rinv_mult. - now apply f_equal. -Qed. - -Lemma Rsqr_div' x y : Rsqr (x / y) = Rsqr x / Rsqr y. -Proof. - unfold Rsqr, Rdiv. - rewrite Rinv_mult. - ring. -Qed. - -(* fin des lemmes pris de 8.16 *) (** Complements on ring operations Rplus and Rmult. **) Lemma Rplus_not_eq_compat_l : forall r r1 r2, r1 <> r2 -> r + r1 <> r + r2. -- GitLab