diff --git a/Lebesgue/Set_theory/Set_base.v b/Lebesgue/Set_theory/Set_base.v index c22db4cacde4338b5ab9490c71c3b6273848e4c5..e4d81173b3c5ad802c1fc93b597339cc1a5df60d 100644 --- a/Lebesgue/Set_theory/Set_base.v +++ b/Lebesgue/Set_theory/Set_base.v @@ -2491,9 +2491,9 @@ Variable f : U1 -> U2. (** Facts about image. *) -Lemma image_id : forall {U : Type} (A : set U), image id A = A. +Lemma image_id : forall {U : Type}, @image U U id = id. Proof. -intros; apply set_ext_equiv; split; intros x Hx. +intros; apply fun_ext; intros A; apply set_ext_equiv; split; intros x Hx. induction Hx as [x Hx]; easy. rewrite <- id_eq; easy. Qed.