diff --git a/FEM/Algebra/ord_compl.v b/FEM/Algebra/ord_compl.v index 38959363ac982e4ad551dc056581e0f62eebea9b..d3a0e8552006e9e2a78604eee9f919c700ae0941 100644 --- a/FEM/Algebra/ord_compl.v +++ b/FEM/Algebra/ord_compl.v @@ -2527,6 +2527,14 @@ Lemma filterP_ord_ind_l_in_n0 : (j : 'I_(lenPF P)) (Hj : cast_ord (lenPF_ind_l_in HP) j <> ord0), filterP_ord j = lift_S (filterP_ord (lower_S Hj)). Proof. +(* +intros n P HP j Hj1. +assert (Hj2 : + (filterP_ord (Ordinal (lenPF_n0_rev HP)) < filterP_ord j)%coq_nat). + apply filterP_ord_incrF; rewrite -(cast_ord_n0_equiv_gt ); apply Hj1. +rewrite (filterP_ord_ind_l_in_0 ) in Hj2; [| apply ord_inj; easy]. +*) + intros n P HP j Hj; destruct n as [| n]. (* *) exfalso; destruct (le_1_dec (lenPF_le P)) as [HP' | HP'].