diff --git a/Lebesgue/measurable_Rbar.v b/Lebesgue/measurable_Rbar.v index 0c17a5de292a03d623711a78f49dbdfb08caa039..c1ee157cf3a4cbe7cb731cdd3cb41a47b47d9795 100644 --- a/Lebesgue/measurable_Rbar.v +++ b/Lebesgue/measurable_Rbar.v @@ -500,9 +500,9 @@ Proof. rewrite measurable_Rbar_eq_Borel; apply measurable_Rbar_Borel_singleton. Qed. -Lemma measurable_Rbar_eq_le : measurable_Rbar = measurable gen_Rbar_le. +Lemma measurable_Rbar_eq_ge : measurable_Rbar = measurable gen_Rbar_ge. Proof. -rewrite <- measurable_Rbar_Borel_eq_le, measurable_Rbar_Borel_eq_lt; easy. +rewrite <- measurable_Rbar_Borel_eq_ge, measurable_Rbar_Borel_eq_lt; easy. Qed. Lemma measurable_Rbar_eq_gt : measurable_Rbar = measurable gen_Rbar_gt. @@ -510,84 +510,56 @@ Proof. rewrite <- measurable_Rbar_Borel_eq_gt, measurable_Rbar_Borel_eq_lt; easy. Qed. -Lemma measurable_Rbar_eq_ge : measurable_Rbar = measurable gen_Rbar_ge. +Lemma measurable_Rbar_eq_le : measurable_Rbar = measurable gen_Rbar_le. Proof. -rewrite <- measurable_Rbar_Borel_eq_ge, measurable_Rbar_Borel_eq_lt; easy. +rewrite <- measurable_Rbar_Borel_eq_le, measurable_Rbar_Borel_eq_lt; easy. Qed. -Lemma measurable_Rbar_lt_R : forall (a : R), measurable_Rbar (Rbar_lt a). +Lemma measurable_Rbar_ge : forall b, measurable_Rbar (Rbar_ge b). Proof. -intros; apply measurable_gen; easy. +intros; apply measurable_Rbar_closed, closed_Rbar_ge. Qed. -Lemma measurable_Rbar_lt : forall a, measurable_Rbar (Rbar_lt a). -Proof. -intros a; destruct a. -apply measurable_Rbar_lt_R. -apply measurable_ext with emptyset; try easy; apply measurable_empty. -apply measurable_ext with (union_seq (fun n => Rbar_lt (- INR n))). -admit. -apply measurable_union_seq; intros n; apply measurable_Rbar_lt_R. -Admitted. - -Lemma measurable_Rbar_le_R : forall (a : R), measurable_Rbar (Rbar_le a). +Lemma measurable_Rbar_gt : forall b, measurable_Rbar (Rbar_gt b). Proof. -intros; rewrite measurable_Rbar_eq_le; apply measurable_gen; easy. +intros; apply measurable_Rbar_open, open_Rbar_gt. Qed. Lemma measurable_Rbar_le : forall a, measurable_Rbar (Rbar_le a). Proof. -intros a; destruct a. -apply measurable_Rbar_le_R. -apply measurable_ext with (singleton p_infty). -Rbar_interval_full_unfold; intros y; destruct y; easy. -apply measurable_Rbar_singleton. -apply measurable_ext with fullset; try easy. -apply measurable_full. +intros; apply measurable_Rbar_closed, closed_Rbar_le. Qed. -Lemma measurable_Rbar_gt : forall b, measurable_Rbar (Rbar_gt b). +Lemma measurable_Rbar_lt : forall a, measurable_Rbar (Rbar_lt a). Proof. -intros; apply measurable_compl_rev. - -(* We need Rbar_le_not_gt. *) - -Admitted. +intros; apply measurable_Rbar_open, open_Rbar_lt. +Qed. -Lemma measurable_Rbar_ge : forall b, measurable_Rbar (Rbar_ge b). +Lemma measurable_Rbar_cc : forall a b, measurable_Rbar (Rbar_cc a b). Proof. -intros; apply measurable_compl_rev. - -(* We need Rbar_lt_not_ge. *) - -Admitted. +intros; apply measurable_Rbar_closed, closed_Rbar_intcc. +Qed. -Lemma measurable_Rbar_oo : forall a b, measurable_Rbar (Rbar_oo a b). +Lemma measurable_Rbar_co : forall a b, measurable_Rbar (Rbar_co a b). Proof. -intros; apply measurable_inter. -apply measurable_Rbar_lt. -apply measurable_Rbar_gt. +intros; apply measurable_inter; + [apply measurable_Rbar_le | apply measurable_Rbar_gt]. Qed. Lemma measurable_Rbar_oc : forall a b, measurable_Rbar (Rbar_oc a b). Proof. -intros; apply measurable_inter. -apply measurable_Rbar_lt. -apply measurable_Rbar_ge. +intros; apply measurable_inter; + [apply measurable_Rbar_lt | apply measurable_Rbar_ge]. Qed. -Lemma measurable_Rbar_co : forall a b, measurable_Rbar (Rbar_co a b). +Lemma measurable_Rbar_oo : forall a b, measurable_Rbar (Rbar_oo a b). Proof. -intros; apply measurable_inter. -apply measurable_Rbar_le. -apply measurable_Rbar_gt. +intros; apply measurable_Rbar_open, open_Rbar_intoo. Qed. -Lemma measurable_Rbar_cc : forall a b, measurable_Rbar (Rbar_cc a b). +Lemma measurable_Rbar_scal : + forall B l, measurable_Rbar B -> measurable_Rbar (fun y => B (Rbar_mult l y)). Proof. -intros; apply measurable_inter. -apply measurable_Rbar_le. -apply measurable_Rbar_ge. -Qed. +Admitted. End measurable_Rbar.