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ABSTRACT
Despite the benefits that the Blockchain technology brings to many

application fields, its adoption does not come without challenges.

Smart contracts, which are at the core of 2
nd

generation blockchains,

can often be riddled with vulnerabilities that can be exploited to

attack the platform and threaten its security. It is therefore crucial

for the protection of the designed systems to prove the correct-

ness of the smart contracts to be deployed. Approaches have been

proposed to detect generic vulnerabilities like reentrancy, but the

results would often include false positives where the detected bug is

either non existent or not exploitable. Besides, such approaches do

not offer to check contract-specific properties. The work presented

in this paper is situated as part of a formal approach that we have

proposed in an attempt to bridge this gap. This previously outlined

approach is based on the transformation of Solidity smart contracts

into Coloured Petri nets, which provides the possibility to verify

smart contracts with reference to properties expressed as Linear

Temporal Logic (LTL) formulae. Herein we extend our previous

work on mainly two levels: first, by taking into account the concept

of function calls in the transformation and second, by focusing on

the LTL properties that can define the correctness of a smart con-

tract. Such properties can be specific to the control- or data-flow of

the contracts being checked. They can also be used to express vul-

nerabilities as we showcase by proposing LTL formalizations for six

vulnerabilities from the literature. We then leverage the capability

of the Helena model checker to detect these vulnerabilities while

discerning their exploitability, as well as check temporal-based

contract-specific properties.
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1 INTRODUCTION
First known as the supporting technology of the renowned Bit-

coin cryptocurrency, the Blockchain has ever since known many

advances that took it from being merely a database recording trans-

actions between parties to being a computational platform onwhich

smart contracts can be invoked as transactions. This leap signif-

icantly expands the power of blockchain systems, and increases

their reach to many application fields. This can be particularly ob-

served in the growing interest blockchains are gaining as part of

IT systems, in domains such as health records, banking, voting,

personal identity, etc [26].

While blockchain technology itself has proved to be highly-

tamper resistant, many attacks with significant consequences have

been waged on several blockchain platforms, exploiting hidden

vulnerabilities in deployed smart contracts and exposing the de-

fectiveness of the targeted applications. In 2010, 92 billion BTC

were generated out of thin air by exploiting an integer vulnerability

on the Bitcoin blockchain. One of the most infamous attacks on

Ethereum was the one exploiting a reentrancy vulnerability in the

DAO and resulting in 3.6M of stolen Ether. A vulnerable blockchain-

based application does not have to be the target of a malicious attack

to malfunction. For instance, the Parity multisig wallet was subject
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to an unintentional accident caused by a self-destruct vulnerability

in 2017 and resulting in freezing 500K of Ether.

Given the importance of the assets circulating in each blockchain,

securing the applications deployed on such distributed ledgers is

considered mission-critical, and seeing that most of the vulnerabili-

ties allowing the breaches are rooted in the smart contracts of the

applications, their verification before deployment is crucial.

Informal as well as formal methods have been proposed to en-

hance the security of smart contracts and ensure their correctness.

While informal techniques can test a smart contract under certain

scenarios, they cannot be relied on to verify specific properties

defining its correctness (e.g., absence of integer overflow vulnera-

bilities, deadlock-freedom) which is where formal techniques prove

to be efficient. We note that we are interested in Ethereum as it is

currently the second largest cryptocurrency platform after Bitcoin

besides being the inaugurator of smart contracts, and more particu-

larly in Solidity [1], the most popular language used by Ethereum.

We also note that while Ethereum allows smart contracts to be

written in a ‘Turing complete’ language that facilitates semantically

richer applications than Bitcoin which allows very simple forms

of smart contracts, the former also enlarges the threat surface, as

evidenced by the many high-profile attacks.

In this paper, we build on our proposed approach based on

Coloured Petri Nets (CPNs) [14], for the formal verification of So-

lidity contracts. Our choice of this formalism is driven by its ability

to combine the analysis power of Petri nets with the expressive

power of programming languages, which makes it suitable for the

modeling and verification of large and complex systems. CPNs have

in fact been leveraged in various contexts in literature [10, 23] prov-

ing their efficiency for formal verification. The cornerstone of our

approach was first set in [11] where we presented a rough outline of

the verification method that we propose and a preliminary experi-

mentation using two different model checkers. In [12], we provided

more details on the patterns we propose for the transformation of

a Solidity smart contract into a hierarchical CPN model depicting

the functionality of the former. In this present paper, we propose

improvements on two levels:

(1) first we refine our proposed transformation by taking into

account the concept of function calls. Having initially con-

sidered the basic concepts of Solidity in [12] that allow the

verification of a single smart contract whose functions are

invoked by external users, we now focus on supporting the

verification of functions that can also be invoked by other

functions (either from the same contract or other contracts),

the main implication of which being the added support for

the verification of multiple interacting smart contracts;

(2) and second, we propose a formalization of a set of vulnera-

bilities as LTL formulae. The correctness of the represented

contracts is then proven by analyzing the generated CPN

model and verifying it w.r.t temporal properties that can be ei-

ther predefined for vulnerabilities or other contract-specific

properties relevant to the contract’s data- and control-flows,

which gives the designer a wide range of control to define

the correctness of the contract.

We propose an algorithm that automates our transformation, imple-

ment a prototype to prove its feasibility and leverage the Helena [8]

tool to verify system properties.

The remainder of this paper is organized as follows: Section 2

provides essential prerequisites on CPN and LTL. Section 3 presents

the related works. In Section 4, we present use cases to introduce the

considered vulnerabilities. We revisit our transformation approach

in Section 5 to include function calls and dedicate Section 6 for the

formalization of a selection of vulnerabilities using LTL as well

as providing details on the application of the whole verification

approach. Section 7 concludes the paper and outlines some future

perspectives.

2 BACKGROUND
2.1 Coloured Petri Nets
A Petri net (PN) [22] is a formal model with mathematics-based

execution semantics. It is a directed bipartite graph with two types

of nodes: places (drawn as circles) and transitions (drawn as rect-

angles). Despite its efficiency in modelling and analysing systems,

a basic PN falls short when the system is too complex, especially

when data representation is required. To overcome such limitations,

extensions to basic PN were proposed, equipping the tokens with

colours or types [13], [28] and hence allowing them to hold values.

A large PN model can therefore be represented in a much more

compact and manageable manner using a Coloured Petri net.

A Coloured Petri Net [14] combines the capabilities of Petri nets,

from which its graphical notation is derived, with those of CPN ML,

a functional programming language based on Standard ML [21],

to define data types. The formal definition of a CPN is given in

Definition 2.1 and the main concepts needed to define its dynamics

are given in Definition 2.2.

Definition 2.1 (Coloured Petri net [14]). A Coloured Petri Net is a

nine-tuple 𝐶𝑃𝑁 = (𝑃,𝑇 , 𝐴, Σ,𝑉 ,𝐶,𝐺, 𝐸, 𝐼 ), where:
(1) 𝑃 is a finite set of places.

(2) 𝑇 is a finite set of transitions such that 𝑃 ∩𝑇 = ∅.
(3) 𝐴 ⊆ (𝑃 ×𝑇 ) ∪ (𝑇 × 𝑃) is a set of directed arcs.

(4) Σ is a finite set of non-empty colour sets.

(5) 𝑉 is a finite set of typed variables such that 𝑇𝑦𝑝𝑒 [𝑣] ∈ Σ for

all variables 𝑣 ∈ 𝑉 .

(6) 𝐶 : 𝑃 → Σ is a colour set function that assigns a colour set to

each place.

(7) 𝐺 : 𝑇 → 𝐸𝑋𝑃𝑅𝑉 , where 𝐸𝑋𝑃𝑅𝑉 is the set of expressions pro-

vided by CPNML with variables in𝑉 , is a guard function that

assigns a guard to each transition 𝑡 such that 𝑇𝑦𝑝𝑒 [𝐺 (𝑡)] =
𝐵𝑜𝑜𝑙 .

(8) 𝐸 : 𝐴 → 𝐸𝑋𝑃𝑅𝑉 is an arc expression function that assigns an

arc expression to each arc a such that𝑇𝑦𝑝𝑒 [𝐸 (𝑎)] = 𝐶 (𝑝)𝑀𝑆 ,

where 𝑝 is the place connected to the arc 𝑎 (i.e., the type of

the arc expression is a multiset type over the colour set of

the connected place).

(9) 𝐼 : 𝑃 → 𝐸𝑋𝑃𝑅∅ is an initialisation function that assigns an

initialisation expression to each place 𝑝 s.t. 𝑇𝑦𝑝𝑒 [𝐼 (𝑝)] =

𝐶 (𝑝)𝑀𝑆 .

Definition 2.2 (CPN concepts [14]). For a𝐶𝑃𝑁 = (𝑃,𝑇 ,𝐴, Σ,𝑉 ,𝐶,𝐺,
𝐸, 𝐼 ), we define the following concepts:
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(1) •𝑝 and 𝑝• respectively denote the sets of input and output

transitions of a place 𝑝 .

(2) •𝑡 and 𝑡• respectively denote the sets of input and output

places of a transition 𝑡 .

(3) A marking is a function𝑀 that maps each place 𝑝 ∈ 𝑃 into

a multiset of tokens𝑀 (𝑝) ∈ 𝐶 (𝑝)𝑀𝑆 .

(4) The initial marking 𝑀0 is defined by𝑀0 (𝑝) = 𝐼 (𝑝)⟨⟩ for all
𝑝 ∈ 𝑃 .

(5) The variables of a transition 𝑡 are denoted by 𝑉𝑎𝑟 (𝑡) ⊆ 𝑉

and consist of the free variables appearing in its guard and

in the arc expressions of its connected arcs.

(6) A binding of a transition 𝑡 is a function 𝑏 that maps each

variable 𝑣 ∈ 𝑉𝑎𝑟 (𝑡) into a value 𝑏 (𝑣) ∈ 𝑇𝑦𝑝𝑒 [𝑣]. It is written
as ⟨𝑣𝑎𝑟1 = 𝑣𝑎𝑙1, ..., 𝑣𝑎𝑟𝑛 = 𝑣𝑎𝑙𝑛⟩. The set of all bindings for a
transition 𝑡 is denoted 𝐵(𝑡).

(7) A binding element is a pair (𝑡, 𝑏) such that 𝑡 ∈ 𝑇 and 𝑏 ∈ 𝐵(𝑡).
The set of all binding elements 𝐵𝐸 (𝑡) for a transition 𝑡 is

defined by 𝐵𝐸 (𝑡) = {(𝑡, 𝑏) |𝑏 ∈ 𝐵(𝑡)}. The set of all binding
elements in a CPN is denoted 𝐵𝐸.

(8) A step 𝑌 ∈ 𝐵𝐸𝑀𝑆 is a non-empty, finite multiset of binding

elements.

A transition is said to be enabled if a binding of the variables

appearing in the surrounding arc inscriptions exists such that the

inscription on each input arc evaluates to a multiset of token colours

that is present on the corresponding input place. Firing a transition

consists in removing (resp. adding), from each input place (resp. to

each output place), themultiset of tokens corresponding to the input

(resp. output) arc inscription. Formore details on the CPN formalism

and the formal definition of its semantics, we refer readers to [14].

CPN example. To better explain the basic concepts of CPN, we use

the simple CPN model of Fig. 1. 𝐶𝑜𝑢𝑝𝑙𝑒_𝑇𝑦𝑝𝑒 is defined as the

product of two integers and 𝑇𝑟𝑖𝑝𝑙𝑒𝑡_𝑇𝑦𝑝𝑒 as the product of three

integers. 𝑥 and 𝑦 are two integer variables. In a CPN model, each

place has a colour that determines the kind of data it can contain.

We say that 𝑝1 is of colour (or type) 𝐶𝑜𝑢𝑝𝑙𝑒_𝑇𝑦𝑝𝑒 and 𝑝2 is of

colour 𝑇𝑟𝑖𝑝𝑙𝑒𝑡_𝑇𝑦𝑝𝑒 . Initially, the place 𝑝1 contains three tokens

with different values (three different couples). The expressions on

the arcs have to correspond to the colours of their respective places

(e.g., the expression on the outgoing arc of 𝑝1 has to conform to

its colour𝐶𝑜𝑢𝑝𝑙𝑒_𝑇𝑦𝑝𝑒). In this CPN, (𝑥,𝑦) can be bound to any of

the tokens in 𝑝1. For example, if it is bound to the first token (2, 5),
the firing of transition 𝑡1 results in removing that token from 𝑝1

and adding a token with the value (2, 5, 7) to 𝑝2.

𝑃1 𝑃𝑛𝑡1
(𝑥, 𝑦) (𝑥, 𝑦, 𝑥 + 𝑦)

𝐶𝑜𝑢𝑝𝑙𝑒_𝑇𝑦𝑝𝑒 𝑇𝑟𝑖𝑝𝑙𝑒𝑡_𝑇𝑦𝑝𝑒

1‘(2, 5) + +
1‘(4, 7) + +
1‘(3, 2)

3

Figure 1: A simple example of CPN

2.2 Linear Temporal Logic
The approach presented in this paper is primarily based on model

checking of CPN models w.r.t formulae expressed in Linear Tempo-

ral Logic (LTL). This logic was first introduced in [24] as a means

to reason about concurrent programs.

In LTL, a classical timeline that starts “now” is considered, where

every moment has a unique possible future. In other words, a model

of LTL is an infinite sequence of indexed states (𝑖 = 0, 1, 2, ...) where

each point in time has a unique successor. An LTL formula is eval-

uated over such a sequence of states starting from an 𝑖’th state. It

contains a finite set 𝑃𝑟𝑜𝑝 of atomic propositions, the usual Boolean

operators ¬, ∧, ∨, and →, in addition to temporal operators:

• Until (U): 𝜑 U 𝜓 is true if 𝜓 is true now or 𝜑 is true now

and remains so until𝜓 holds.

• Next (X or
d
): X 𝜑 is true if 𝜑 is true in the next step.

• Globally (G or □): G𝜑 is true if 𝜑 is true in every step.

• Future (F or ^): F 𝜑 is true if 𝜑 is true now or in some

future time step.

Definition 2.3 (LTL formula). An LTL formula can be inductively

defined as follows:

• ∀𝑝 ∈ 𝑃𝑟𝑜𝑝 , 𝑝 is an LTL formula.

• If 𝜑 and 𝜓 are two LTL formulae, then ¬𝜑 , 𝜑 ∧ 𝜓 , 𝜑 ∨ 𝜓 ,

𝜑 → 𝜓 , 𝜑 U 𝜓 , X 𝜑 , G 𝜑 and F 𝜑 are LTL formulae too.

The technique of model checking checks that a system, starting at

a start state, satisfies a specification [25].

3 RELATEDWORKS
There are two primary lines in existing studies on formal verifica-

tion of smart contracts [9]. Theorem proving is the basis for the first

group of works [2, 5]. The fundamental concept is to convert the

contract’s code (typically its associated EVM bytecode) into a theo-

rem prover-processable code and then use the latter to discharge

proofs on the produced code’s correctness. The verification is not

automatic in this situation, and the user’s competence is required

to manage the prover and manually discharge proofs.

Model checking is used in the second category of research stud-

ies. The majority of these studies make use of symbolic model

checking in combination with other techniques like symbolic exe-

cution [16] and abstraction [3]. Oyente [19], a tool that targets four

vulnerabilities: transaction order dependence, timestamp depen-

dence, mishandled exceptions, and reentrancy, is the first attempt

in this category. It works at the contract’s EVM bytecode level,

generating symbolic execution traces and analyzing them for the

satisfaction of particular requirements on the paths, indicating the

presence of vulnerabilities. Multiple tools followed the lead of this

work, either by exploiting some of its components in their imple-

mentations, such as GASPER [6], which reuses Oyente’s generated

control flow graph for the detection of bytecode patterns with high

gas costs, or by extending it like in the case of Osiris [27], with the

goal of supporting the detection of other vulnerabilities.

Zeus [15], which works on the source code of the smart contract,

also uses symbolic model checking. The user must provide the

criteria to be verified as a CHC-based policy written in XACML,

according to which the code is instrumented before being translated

into a low-level intermediate representation (LLVM bitcode), which
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is then given to a verification engine.

VeriSolid [20] is an FSM-based method that, unlike the others, fo-

cuses on creating a correct-by-design contract rather than detecting

bugs. The authors suggest to transform an FSM-based contract into

Solidity code and allow the user to define expected behavior in the

form of liveness, deadlock freedom, and safety properties that may

be represented using templates for CTL properties and validated

by a backend symbolic model checker.

Recently, attempts have been made to employ colored petri nets for

smart contract verification. [18] presents an example of behavioural

properties verification using a CPNmodel for a crowdfunding smart

contract. It does not, however, provide a comprehensive and generic

technique that can be used to any smart contract, since the work

only presents a case study of a manual translation from the use

case’s contract to the CPN model without specifying general trans-

formation rules. [7] proposed another CPN-based solution. The

authors start with the bytecode and apply Hoare’s logic to build

a CPN model, which is subsequently used for the contract’s secu-

rity analysis. Although, it is based on CPN, this technique cannot

be used to verify data-flow properties since the produced model

emphasizes on the workflow retrieved from the contract’s CFG.

The techniques based on symbolic execution (e.g., [6, 19, 27])

often employ under-approximation (e.g., in the form of loop limits)

in order to create the traces that would be used for the verification,

which implies that important violations might be ignored. This

explains why their reported findings contain false negatives and/or

positives. We also highlight the fact that the majority of existing

research focuses on particular smart contract vulnerabilities, with

just a few studies allowing for the expression of customisable fea-

tures, which are often related to control flow-related aspects. None

of these studies, in fact, focus on data-related properties. It’s worth

noting that, due to Solidity’s lack of formal semantics, the majority

of the presented techniques work with the EVM bytecode rather

than the Solidity code. However, this often leads to loss of contex-

tual information, therefore limiting the range of characteristics that

may be checked as a result.

Our suggested solution seeks to address these issues by allowing

developers to create behavioural and contract-specific properties (in

the form of temporal formulae) that can be based on the contract’s

data flow and hence are not limited to a small number of known

vulnerabilities. We note that in our work, the six vulnerabilities

that we consider in Section 6.1 are given as mere examples to prove

that the expressiveness of LTL formulae can cover vulnerabilities

from the literature even though our focus is on the verification of

contract-specific properties. Furthermore, we point out that our

method uses an explicit model checking strategy and that our trans-

formation process works on source code rather than bytecode. As a

result, we avoid the repercussions of under-approximation as well

as loss of contextual information.

4 VULNERABILITIES THROUGH USE CASES
A Solidity smart contract may look like a JavaScript or C program

syntax-wise, but they are actually dissimilar since the underlying

semantics of Solidity is different from traditional programs. This

naturally calls on more vigilance from programmers who might be

faced by unconventional security issues as vulnerabilities in smart

contracts seem to often stem from this gap between the semantics

of Solidity and the intentions of the programmer [4].

In the following we present two use cases to explain the vulner-

abilities treated in this work to provide a better understanding of

how we verify them later. The full Solidity files can be found in our

repository
1
.

One of the most widespread smart contract applications is de-

livering gambling services. Thanks to Blockchain’s decentralized

nature and the transparency of its transactions, players can have a

clear view of the behaviour of the game and are therefore led and

incentivized to put their trust in the system which is determined

by the rules implemented by its contracts. Our first Solidity exam-

ple (Listing 1) is based on a published contract
2
implementing a

lottery game. It has been tweaked to illustrate more vulnerabilities

without altering its purpose. A player participates in this game

by sending an amount of ether equal to the TICKET_AMOUNT

through playTicket(), which is then added to the game’s pot. The

winner is determined based on a random value calculated using

the block’s timestamp and the LottoLog is updated accordingly to

keep track of the winners. The winner then gets paid by calling

getPot() and the game’s host (bank) can start a new round of lotto

using RestartLotto(). This contract may seem fair to inexperienced

Solidity developers, but it actually presents multiple vulnerabilities

as we will later explain.

1 contract EtherLotto {

2 address public bank;

3 struct GameRecord {address winner; uint amount ;}

4 uint8 gameNum;

5 GameRecord [] LottoLog ;...

6 function EtherLotto () {...}

7 function RestartLotto () {...}

8 function playTicket () payable {

9 require(msg.value == TICKET_AMOUNT);...

10 uint random = uint(sha3(block.timestamp)) % 2;

11 if (random == 0) {

12 GameRecord gr;...

13 }}

14 function getPot () {

15 require(won == true);
16 if(msg.sender == LottoLog[gameNum ]. winner){

17 msg.sender.call.value(LottoLog[gameNum ].
amount)("");

18 pot = 0;}}}

Listing 1: Solidity example: EtherLotto.sol

We consider a second example
3
(Listing 2) to emphasize on

the harmful effect the self-destruction vulnerability can have on a

contract. It implements another gambling game whereby a player

sends 1 ether to the contract by calling play() in hopes to be the one

to hit a milestone. Once the game is over (i.e., the finalMileStone is

reached) winners claim their rewards through claimReward().

1 contract EtherMilestone {

2 uint public payoutMileStone1 = 6 ether ;...
3 uint public finalMileStone = 20 ether;
4 uint public finalReward = 10 ether;
5 mapping(address => uint) redeemableEther;

6 function play() public payable {

7 require(msg.value == 1 ether);

1
https://depot.lipn.univ-paris13.fr/garfatta/sol2cpn

2
https://etherscan.io/address/0xa11e4ed59dc94e69612f3111942626ed513cb172

3
https://gist.github.com/vasa-develop/415a17c709d804a4d351485cd1b7c981
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8 uint currentBalance = this.balance + msg.value;
9 require(currentBalance <= finalMileStone);

10 if (currentBalance == payoutMileStone1) ...

11 else if ...

12 else if (currentBalance == finalMileStone )

13 redeemableEther[msg.sender] += finalReward;

14 return ;}
15 function claimReward () public {

16 require(this.balance == finalMileStone);

17 require(redeemableEther[msg.sender] > 0);

18 redeemableEther[msg.sender] = 0;

19 msg.sender.call.value(redeemableEther[msg.sender
])("");}}

Listing 2: Solidity example: EtherMilestone.sol

1 contract MaliciousContract {

2 uint ticket;

3 EtherLotto el = EtherLotto (0 xbf0061dc ...);

4 EtherMilestone em = EtherMilestone (0 xc50164dfa ...);

5 function playLotto () {

6 ticket = msg.value;
7 el.playTicket.value(ticket)();
8 el.getPot ();}

9 function playMilestone () { em.play.value (1)();}
10 function getRevenge ( ) { selfdestruct(em);}
11 function () payable { el.getPot ();}}

Listing 3: A malicious smart contract in Solidity

Integer Overflow/Underflow: due to Solidity’s lack of safeguards

onmathematical operators, errors such as overflows and underflows

may occur as a result of violation of value limitations of integers.

The uint8 gameNum variable in the EtherLotto contract can be the

source of such a vulnerability when the game exceeds 256 rounds.

In fact, at the 257
th

round, and due to Solidity’s wrapping in two’s

complement representation for integers, gameNum will be set to 0,

causing data errors/overwriting into the critical LottoLog variable.

Reentrancy: the main idea behind it is that a function can be inter-

rupted in the middle of its execution and then be safely called again

before its initial call completes. Once the second call completes, the

initial one resumes correct execution. The simplest example is when

a smart contract uses a variable to keep track of balances and offers

a withdraw function. A vulnerable contract would make a transfer

of funds prior to updating the corresponding balance which an

attacker can take advantage of by recursively calling this function

and eventually draining the contract. This can be illustrated by a

call to the function playLotto() with a value of 10 in the Malicious-

Contract (Listing 3) which would start by playing a ticket in the

EtherLotto contract by invoking its playTicket() function and then

attempting its getPot() function. In the instance where attacker’s

ticket is a winning one and the contract holds more than twice the

amount of the pot in that round, a reentrancy attack can happen. In

fact, by sending the jackpot to the winner (Listing 1), the EtherLotto

contract invokes the fallback function of the MaliciousContract,

which is an unnamed function used to receive data or Ether. This is

where the control flow is handed over to the latter contract whose

fallback function recursively calls getPot(), which is allowed since

the conditions are still valid, until the EtherLotto contract’s balance

is less than the current pot’s amount.

Self-Destruction: the selfdestruct(address) function, when imple-

mented in a contract, removes all bytecode from the contract’s ad-

dress to render it inaccessible and sends all its ether to the specified

address. The latter can be another contract’s address, in which case,

the ether transfer happens forcibly, regardless of the recipient’s

code (i.e., without invoking its fallback function). Getting back to

our second example EtherMilestone, we note the use of this.balance

in play() and claimReward(). A player whomissed a milestone, could

vengefully send ether using selfdestruct() (e.g., function getRevenge()

in MaliciousContract) as to push the contract’s balance above the

finalMileStone, locking all of the contract’s ether and denying the

winners who had already reached some milestones their rewards

since claimReward() would revert.

Timestamp dependence: since the execution on a Blockchain

needs to be deterministic for all the miners to get the same re-

sults and reach a consensus, users usually resort to block-related

variables such as timestamp as a source of entropy. Sharing the

same view on the Blockchain, miners would generate the same re-

sult, albeit being unpredictable. Even though this seems to be safe,

it gives the miners a small room for manipulation given that they

can choose a timestamp within a certain range for the new block,

which gives them the possibility to tamper with the results and put

some bias towards a certain user for example. Such a vulnerabil-

ity can be exploited by any contract relying on a time constraint

to determine its course of action. In our EtherLotto example, the

function playTicket() is timestamp-dependent.

Skip Empty Literal: the source of this vulnerability is the way the

encoder of the Solidity compiler treats the arguments in a function

call. In fact, when a function call’s argument is an empty string

literal, it affects the following arguments which are shifted to the

right by 32 bytes. This results in a function call with corrupted data.

Uninitialized Storage Variable: Solidity stores state variables se-

quentially. So in EtherLotto, the variable bank is stored in slot 0.

Since Solidity uses storage for complex data types like structs by

default when declared as local variables, they become pointers to

storage. Because gr is uninitialized (Listing 1), it would actually

point to the same slot as bank. When setting gr.winner to the first

winner’s address, this is effectively changing the address stored in

bank to the winner’s, which results in an unexpected behaviour

by this contract. In our example, we present this vulnerability as

an error unintentionally introduced by the contract’s owner and

unintentionally exploited by the first winner. It can, however, be

intentionally injected in a contract’s code or intentionally exploited

by a user, as is the case in the OpenAddressLottery
4
honeypot.

5 A SOLIDITY-TO-CPN FORMAL
VERIFICATION

Our verification approach comprises mainly two steps [11, 12]:

(1) transforming the smart contract’s Solidity code into a CPN

model

(2) model checking of the generated CPN model with regard to

an LTL property that can express: (i) a vulnerability in the

code or (ii) a contract-specific property

The first step consists in generating a CPN submodel for each func-

tion of the contract to be verified (see Figure 2). These submodels

(that we call level-0 submodels) represent the internal workflows

of the functions and serve as building blocks for the final HCPN

4
https://etherscan.io/address/0x741f1923974464efd0aa70e77800ba5d9ed18902
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Figure 2: Overview of the approach

model. Then, depending on the property considered for verification,

the function targeted in the verification and whether knowledge

of the interacting contracts is provided, the actual CPN model that

will be passed to the model checker is built by (1) considering the

submodel of the function to be checked as the level-1 of the HCPN,

(2) linking it to the places representing the state of the blockchain

and (3) building a hierarchy (i.e. additional levels) by explicitly rep-

resenting function calls in this submodel (if the checked property

requires it).

5.1 A CPN Modelling Approach for Solidity
Smart Contracts

In our approach, we opt for a hierarchical CPN model to repre-

sent a smart contract. As shown in Figure 2, we represent each

function of the smart contract by an aggregated transition that en-

capsulates a submodel corresponding to the body of the former. In

the first step, these functions are represented disjointedly. In fact,

our aim at this pre-verification stage is to get building blocks for

the smart contract’s model that will be fed to the model checker.

In the second step, the obtained submodels are contextualized by

specifying the input for the function to be verified (places S and P

which respectively represent the state of the contract and the call

arguments of the function) and potentially linking its submodel

to other functions’ submodels in case of the presence of function

calls. In fact, function calls are initially abstracted and therefore

represented by aggregated transitions in the model (e.g., 𝑡 𝑓 𝑗 [𝑠𝑖 ] in
Figure 2) under the assumption that they do not present structural

problems (deadlock-free and loop-free) which can be separately

verified for each function. Depending on the property to be verified,

an aggregated transition may need to be unfolded if it is involved

in the property, hence the multi-level hierarchy in the model (e.g.,

𝑡 𝑓 𝑗 [𝑠𝑖 ] in𝑀 𝑓 𝑖 [𝑠𝑖 ]
is hidden and replaced by its submodel𝑀 𝑓 𝑗 [𝑠𝑖 ]

).

It is kept folded otherwise (e.g., 𝑡 𝑓 𝑘 [𝑠𝑖 ] in𝑀 𝑓 ℎ [𝑠𝑖 ]
). This abstraction

leads to a reduction in the size of the state space the model checker

needs to search. We note that this is a generic structure that could

be enriched by a more specific control flow if the user provides a

source from which a behaviour could be extracted (e.g., the code of

an interacting smart contract, a business model defining the work-

flow in which the contract is used). In the following, we further

detail the elements of our proposed model in order to provide a

better understanding of the Algorithms 1, 2 and 3.

5.2 Elements of our CPN Model for Solidity
Transitions 𝑇

(1) 𝑇𝐴
: aggregated transitions used for the representation of

functions, as well as for the modular representation of func-

tion calls. They can be substituted by submodels.

(2) 𝑇𝑅
: regular CPN transitions. They are unsubstitutable.

For a transition 𝑡 ∈ 𝑇 we note:

• 𝑡 .𝑛𝑎𝑚𝑒 , the name of the transition 𝑡

• 𝑡 .𝑠𝑡 , the Solidity code associated to 𝑡

• 𝑡 .𝑚𝑒𝑡𝑎𝐶𝑜𝑙𝑜𝑢𝑟 , the metaColour of the control flow places of

𝑡 (if 𝑡 ∈ 𝑇𝐴
)

• 𝑡 .𝑑𝑎𝑡𝑎, the set of data places associated to 𝑡 (if 𝑡 ∈ 𝑇𝐴
)

• 𝑡 .𝑠𝑢𝑏, the CPN submodel associated to transition 𝑡 (if 𝑡 ∈
𝑇𝐴

), with 𝑡 .𝑠𝑢𝑏.𝑖𝑛𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 designating its input (source)

transitions and 𝑡 .𝑠𝑢𝑏.𝑜𝑢𝑡𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 designating its output

(sink) transitions

• 𝑡 .𝑔𝑢𝑎𝑟𝑑 , the guard of the transition 𝑡

• •𝑡 [𝑐 𝑓 ] ∈ 𝑃𝐶𝐹 ∪ 𝑃𝑆 , input control flow place of 𝑡

• •𝑡 [𝑖𝑛𝑝𝑢𝑡] ∈ 𝑃𝑃 , input parameters place of 𝑡

• •𝑡 [𝑑𝑎𝑡𝑎] ⊆ 𝑃𝑑𝑎𝑡𝑎 , input data places of 𝑡

• 𝑡 • [𝑐 𝑓 ] ∈ 𝑃𝐶𝐹 ∪ 𝑃𝑆 , output control flow place of 𝑡

• 𝑡 • [𝑜𝑢𝑡𝑝𝑢𝑡] ∈ 𝑃𝑅 , output return place of 𝑡
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• 𝑡 • [𝑑𝑎𝑡𝑎] ⊆ 𝑃𝑑𝑎𝑡𝑎 , output data places of 𝑡

Places 𝑃
• C-flow places 𝑃𝐶𝐹 , Data places 𝑃𝑑𝑎𝑡𝑎 , Parameter places 𝑃𝑃 ,

Return places 𝑃𝑅

• a state place 𝑝𝑠 ∈ 𝑃𝑆
• a parameters place 𝑝𝑝 ∈ 𝑃𝑃

Expressions 𝐸 An expression is a construct that can be made

up of literals, variables, function calls and operators, according to

the syntax of Solidity, that evaluates to a single value. For ease of

representation later, we define three types of expressions:

• expressions with variables 𝐸𝑉 : are expressions that make

use of at least one local variable. In such an expression 𝑒𝑣 ,

the set of variables used is accessible via 𝑒𝑣 .𝑣𝑎𝑟𝑠 .

• expressions with function calls 𝐸𝐹 : are expressions that make

use of at least one function call. In an expression 𝑒𝑣 , the set

of function calls used is accessible via 𝑒𝑣 .𝑓 𝑐𝑡𝐶𝑎𝑙𝑙𝑠

• explicit expressions 𝐸𝐸 : are expressions that do not make

use of any variables nor function calls.

We note that an expression 𝑒 can of course have both variables and

function calls (𝑒 ∈ 𝐸𝑉 ∧ 𝑒 ∈ 𝐸𝐹 ).

Statements 𝑆
• compound statement {𝑠𝑡 [1]; 𝑠𝑡 [2]; . . . ; 𝑠𝑡 [𝑁 ]} (where ∀𝑖 ∈

[1..𝑁 ], 𝑠𝑡 [𝑖] ∈ 𝑆)

• a simple statement (𝑠𝑡𝐿𝐻𝑆 , 𝑠𝑡𝑅𝐻𝑆 ) (where 𝑠𝑡𝐿𝐻𝑆 ∈ 𝐸 and

𝑠𝑡𝑅𝐻𝑆 ∈ 𝐸)

– a function call statement, where: 𝑠𝑡𝐿𝐻𝑆 = ∅ and 𝑠𝑡𝑅𝐻𝑆 .𝑣𝑎𝑟𝑠

designates the set of variables used in the arguments of

the call (if 𝑠𝑡𝑅𝐻𝑆 ∈ 𝐸𝑉 )

– an assignment statement, where: 𝑠𝑡𝐿𝐻𝑆 ∈ 𝐸𝑉 and 𝑠𝑡𝐿𝐻𝑆 .𝑣𝑎𝑟𝑠

contains one variable that designates the assigned one

𝑠𝑡𝑅𝐻𝑆 .𝑣𝑎𝑟𝑠 designates the set of variables used in the as-

signment expression (if 𝑠𝑡𝑅𝐻𝑆 ∈ 𝐸𝑉 ) and 𝑠𝑡𝑅𝐻𝑆 .𝑓 𝑐𝑡𝐶𝑎𝑙𝑙𝑠

designates the set of function calls (if 𝑠𝑡𝑅𝐻𝑆 ∈ 𝐸𝐹 )

• a control statement
5

5.3 Transformation Algorithm
The end goal of our transformation is to generate a multi-level

hierarchical CPN model that represents the execution of a function

of the Solidity smart contract with regard to a property to be verified.

First, we generate the aggregated transitions for the smart contract’s

functions, and build their submodels.

In fact, we see a smart contract function as a set of statements.

A statement can be either a compound, a simple or a control one. A

simple statement can be a function call, an assignment, a variable

declaration, a sending or a returning statement. A control state-

ment can be a requirement, a selection or a loop (a for or a while

loop). To each one of these statement types we define a correspond-

ing pattern in CPN, according to which a snippet of a CPN model

is generated [12]. The resulting snippets are linked according to

the function’s internal workflow. For example, Figure 3 represents

the resulting submodel obtained by applying our transformation

algorithm (Algorithm 1) on the function play() of the EtherMile-

stone contract. The buildCompoundStatement is first called on

the body of the function, creating the places 𝑃1 to 𝑃4 and then

5
See footnote 1 for the full list of elements.

Algorithm 1: createSubModel(t; st; pin; pout)

Input :𝑡 , statement 𝑠𝑡 , cf input place 𝑝𝑖𝑛 , cf output place

𝑝𝑜𝑢𝑡
Output : submodel of transition 𝑡

1 switch 𝑠𝑡 do
2 case compound st {𝑠𝑡 [1]; 𝑠𝑡 [2]; . . . ; 𝑠𝑡 [𝑁 ]} do
3 buildCompoundStatement

4 (t;st;pin;pout)

5 end case
6 case simple st do
7 switch 𝑠𝑡 do
8 case ... do
9 ...

10 end case
11 case function call st do
12 buildFunctionCallStatement

13 (t;st;pin;pout)

14 end case
15 end switch
16 end case
17 end switch

recursively calling createSubModel on each of the 5 statements it

comprises. The algorithm corresponding to the statement’s type is

invoked each time, adding the necessary places and transitions in

conformance to the defined patterns.

We only include the algorithm responsible for the generation of

the CPN pattern for a function call
6
.

Algorithm 2: buildFunctionCallStatement(t; st; pin;
pout)

Input : transition 𝑡 , a function call statement

𝑠𝑡 = (𝑠𝑡𝐿𝐻𝑆 , 𝑠𝑡𝑅𝐻𝑆 ), control flow input place 𝑝𝑖𝑛 ,

control flow output place 𝑝𝑜𝑢𝑡
Output : submodel for statement 𝑠𝑡

1 create transition 𝑡 𝑓

2 create place 𝑝𝑝𝑎𝑟𝑎𝑚𝑓

3 create arc from 𝑝𝑖𝑛 to 𝑡 𝑓

4 create arc from 𝑝𝑝𝑎𝑟𝑎𝑚𝑓
to 𝑡 𝑓

5 connectLocalVars(𝑓𝑅𝐻𝑆 .𝑣𝑎𝑟𝑠 ;𝑡 ;𝑡
𝑓
)

6 connectFunCalls(𝑓𝑅𝐻𝑆 .𝑓 𝑐𝑡𝐶𝑎𝑙𝑙𝑠 ;𝑡 )

7 create arc from 𝑡 𝑓 to 𝑝𝑜𝑢𝑡 with a placeholder inscription

As stated before, the second step of our modelling approach

consists in contextualizing the function to be verified. To do so,

two places are created to represent the state of the smart contract

and the call arguments for the function in question and are linked

to its respective submodel which represents the first level in our

hierarchical CPN. Aggregated transitions within this submodel are

unfolded (and aggregated transitions within these unfolded tran-

sitions, recursively) depending on the property to be verified (see

6
See footnote 1 for the rest of the algorithms with detailed explanations (in the Solid-

ity2CPN document).
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Figure 3: CPN submodel of play() function in EtherMilestone

Algorithm 3: unfoldTransition(ta;pin;pout)
Input :aggregated transition 𝑡𝑎 , 𝑝𝑖𝑛 , 𝑝𝑜𝑢𝑡
Output : submodel replacement of 𝑡𝑎

1 for 𝑡 ′ ∈ 𝑡𝑎 .𝑠𝑢𝑏.𝑖𝑛𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 do
2 replicate (arc from 𝑝𝑖𝑛 to 𝑡𝑎) to 𝑡 ′

3 replicate (arc from •𝑡 [𝑖𝑛𝑝𝑢𝑡] to 𝑡𝑎) to 𝑡 ′
4 for 𝑝 ∈ •𝑡𝑎 [𝑑𝑎𝑡𝑎] ∪ •𝑡𝑎 [𝑜𝑢𝑡𝑝𝑢𝑡] do
5 replicate (arc from 𝑝 to 𝑡𝑎) to 𝑡 ′

6 end for
7 end for
8 for 𝑡 ′ ∈ 𝑡𝑎 .𝑠𝑢𝑏.𝑜𝑢𝑡𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 do
9 replicate (arc from 𝑡𝑎 to 𝑝𝑜𝑢𝑡 ) to 𝑡

′
with the placeholder

inscription replaced by values from •𝑡 ′[𝑐 𝑓 ]
10 end for
11 hide transition 𝑡𝑎 and all arcs linked to it

algorithm unfoldTransition) which builds the final hierarchical

CPN to be checked.

6 FORMAL VERIFICATION OF SMART
CONTRACTS

As explained in Section 5, we adopt a two-phase verification ap-

proach, in which we rely on Helena to verify LTL properties that

express the susceptibility of contracts to vulnerabilities. To this aim,

we start by expressing each targeted vulnerability in LTL.

6.1 Expressing Vulnerabilities in LTL
In the following,𝑀

𝑓
𝑠𝑖 designates the CPN submodel corresponding

to function 𝑓 in smart contract 𝑠𝑖 . We note that sometimes we use

parameterized propositions to indicate that they are applied to an

unspecified aggregated transition. Concretely, such propositions

need to be explicitly defined for each transition to be verified
7
.

7
Not to be confused with first order predicates

6.1.1 Integer Overflow/Underflow. In our CPN model, we define

correspondences between the types used in the Solidity language

and those offered by helena so that they cover the same ranges. The

model checker is therefore able to detect when the smart contract

contains an out-of-range expression. It does not, however, pinpoint

the source of the anomaly, so the user does not have much infor-

mation to go on to track it and try to correct it. To overcome this

deficiency, we propose to model integer overflows/underflows as a

safety LTL property that can be verified on a specific variable 𝑥 :

𝐼𝑈𝑂𝑥 = □¬𝑥𝐼𝑠𝑂𝑢𝑡𝑂 𝑓 𝑅𝑎𝑛𝑔𝑒

Where xIsOutOfRange is a proposition that evaluates to true if

the value of 𝑥 is not included in the range of its type which we

delimit by defining lower and higher thresholds (minThreshold and

maxThreshold respectively).

𝑥𝐼𝑠𝑂𝑢𝑡𝑂 𝑓 𝑅𝑎𝑛𝑔𝑒 =(𝑥 < 𝑚𝑖𝑛𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
∨ (𝑥 > 𝑚𝑎𝑥𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

6.1.2 Reentrancy. This vulnerability is related to functions that

contain instructions responsible for Ether transfer, and therefore is

applied w.r.t a function containing a sending statement. Given such

a function, we propose two LTL properties. The first is a safety

property defined as follows:

𝑅𝑒𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑦
𝑀

𝑓
𝑠𝑖

= □¬𝑟𝑒𝑒𝑛𝑡𝑟𝑎𝑛𝑡
𝑀

𝑓
𝑠𝑖

Where reentrant
𝑀

𝑓
𝑠𝑖

is true if the necessary condition under

which a reentrancy vulnerability can be detected in the function 𝑓

in the smart contract 𝑠𝑖 is valid. This condition can only be defined

when the user indicates the variable 𝑥 serving as a record for bal-

ances and whose assignment should be watched. Such a condition

expresses the presence of a sending statement which is not preceded

by an assignment to 𝑥 :

𝑟𝑒𝑒𝑛𝑡𝑟𝑎𝑛𝑡
𝑀

𝑓
𝑠𝑖

= (¬𝑋𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡)U 𝑆𝑒𝑛𝑑𝑖𝑛𝑔

Where XAssignment is true when a statement is an assignment to

the variable 𝑥 and Sending is true when a statement is a sending one.
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A vulnerability is detected when Reentrancy(𝑡
𝑓
𝑠𝑖 ) evaluates to false.

This property is used when we only have the code of the smart

contract to be verified (i.e., a totally free behaviour). If the code of

the interacting contract 𝑠 𝑗 is available, we propose the following

LTL property:

𝑅𝑒𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑦
𝑀

𝑓
𝑠𝑖

=𝑆𝑒𝑛𝑑𝑖𝑛𝑔𝑇𝑜𝑠 𝑗 → d□((¬𝑆𝑒𝑛𝑑𝑖𝑛𝑔𝑇𝑜𝑠 𝑗 )
U 𝑒𝑛𝑑𝑂𝑓 𝐹𝑎𝑙𝑙𝑏𝑎𝑐𝑘𝑠 𝑗 )

Using this property we can verify that once the sending state-

ment is executed (SendingTo𝑠 𝑗 is true), it cannot be executed again

until the fallback function of the receiving contract has finished

(endOfFallback𝑠 𝑗 is true) i.e., no reentrancy breach can happen.

6.1.3 Self-destruction. It is checked by detecting the presence of a

test containing this.balance in the code of the function:

𝑠𝑒𝑙 𝑓 𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
𝑀

𝑓
𝑠𝑖

= ¬𝑡𝑒𝑠𝑡𝑂𝑛𝐵𝑎𝑙𝑎𝑛𝑐𝑒
𝑀

𝑓
𝑠𝑖

This detection process can be further enhancedwhen the code of the

interacting smart contract is available. In that case, given a function

𝑔 in 𝑠 𝑗 that contains a self destruction instruction directing Ether to

𝑠𝑖 , a function 𝑓 in 𝑠𝑖 is considered safe against this vulnerability if

it does not contain a test on this.balance or if 𝑔 cannot be executed

prior to 𝑓 under inspection, which is expressed by the LTL property:

𝑠𝑒𝑙 𝑓 𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
𝑀

𝑓
𝑠𝑖

=(¬𝑡𝑒𝑠𝑡𝑂𝑛𝐵𝑎𝑙𝑎𝑛𝑐𝑒
𝑀

𝑓
𝑠𝑖

)

∨ (¬𝑠𝑒𝑙 𝑓 𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑀𝑔
𝑠𝑗

U 𝑠𝑡𝑎𝑟𝑡
𝑀

𝑓
𝑠𝑖

)

We note that even though these properties can detect the presence

of the self destruction vulnerability, more information on what the

function exactly does needs to be provided in order to be able to

assess its harmfulness on the execution. This can still be checked

by evaluating a contract-specific property.

6.1.4 Timestamp Dependence. In order to check for this vulner-

ability, we propose an LTL property to detect the accessibility of

block.timestamp or its alias now:

𝑇𝑆𝐷
𝑀

𝑓
𝑠𝑖

= □¬𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝐷𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑡𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡

Where TimestampDependantStatement is true if a timestamp is used

in a statement. Similarly to the self destruction vulnerability, the

presence of timestamp dependence can be detected using the pro-

posed property, but to check the harm it may incur a more appro-

priate contract-specific property needs to be evaluated.

6.1.5 Skip Empty String Literal. This can be checked for a func-

tion 𝑓 containing function calls by verifying that for any function

call with 𝑛 arguments {𝑎1, .., 𝑎𝑛} no empty string is passed as an

argument (except for the last one 𝑎𝑛). We express this as follows:

𝑆𝑘𝑖𝑝𝐸𝑚𝑝𝑡𝑦
𝑀

𝑓
𝑠𝑖

= □¬𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐶𝑎𝑙𝑙

Where FunctionCall is true when the statement is a function call

with an empty argument 𝑎𝑖 (𝑖 ≠ 𝑛).

6.1.6 Uninitialized Storage Variable. This is verified for a function

𝑓 where a variable 𝑥 of a complex type is defined, by checking the

following property:

𝑈𝑛𝑖𝑛𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒
𝑀

𝑓
𝑠𝑖

= ¬𝑟𝑒𝑎𝑑𝑋U𝑤𝑟𝑖𝑡𝑒𝑋

Where readX is true when 𝑥 is read in a statement and writeX is

true when it is assigned.

6.2 Model Checking of Smart Contracts
Oncewe have applied our transformation algorithm to first generate

the submodels of a smart contract’s functions, verifying properties

of the contract would come down to verifying properties on the

corresponding CPNmodel. Formodel checking, we choseHelena [8]

which is a High LEvel Nets Analyzer available as a command line

tool. It offers explicit model checking support for an on-the-fly

verification of state and LTL properties over CPN models described

in Helena’s specification language.

Figure 4: Integer overflow/underflow property in Helena

We have generated the CPN models of our use cases for Helena

using our prototype for the transformation algorithm (see Figure 3

for an example of a visual representation of the CPN submodel of

the function play() in EtherMilestone). We have then written the

properties for the vulnerabilities in Section 4 in Helena’s language.

Thus, we were able to detect the described vulnerabilities, as well

as contract-specific properties established for our examples. The

artifacts used in this verification, a detailed report on the results

and the prototype implementation are available in our repository
8
.

Figure 5: Model checking result

Figure 4 shows the corresponding property written in Helena

for the IUO LTL property applied on the variable gameNum in

EtherLotto and Figure 5 is a snippet of the result of themodel checker

showing the detection of the vulnerability and the indication of a

counter example. The detection process took 35.8s including 1.79s

for source compilation and 34.01s for state space exploration which

had entailed the processing of 13 664 828 states, for a test on a

model with 10 players.

8
See footnote 1
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7 CONCLUSION AND FUTUREWORK
Considering the crucial role the blockchain technology plays in

many domain applications especially with its increasingly expand-

ing reach, it is critical for smart contracts to provide certain guaran-

tees in terms of correctness to support a foundation built on trust.

Formal approaches for the verification of Solidity smart contracts

have been proposed, but they are generally designed to target spe-

cific vulnerabilities known in the literature (e.g., reentrancy) which

have been reported to be the root of some attacks or malfunctions.

Checking the absence of such vulnerabilities in a smart contract,

however necessary, does not guarantee its correctness as a faulty

behaviour may stem from a flaw specific to that contract. With

our proposed approach we aim to bring a solution to this problem

by providing a way to formally verify smart contracts by not only

checking for vulnerabilities in the code but also offering the pos-

sibility to express additional contract-specific properties to check.

Our prototype and preliminary tests prove the feasibility of our

approach. A comprehensive evaluation (e.g., by experimenting on

some existing data set of smart contracts like SolidiFI
9
) still needs

to be carried out. To further improve our verification results and

get better scalability, we intend to work on Helena by embedding it

with an extension to an existing state space reduction technique

previously developed for PNs [17] and adapting it for CPNs.
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