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Abstract. Several features of the Blockchain technology are well aligned
with critical issues in the Business Process Management (BPM) field, and
yet adopting Blockchain for BPM should not be taken lightly. In fact,
the security of smart contracts, which are one of the main elements of
the Blockchain that make the integration with BPM possible, has proved
to be vulnerable. It is therefore crucial for the protection of the designed
business processes to prove the correctness of the smart contracts to be
deployed on a blockchain. In this paper we propose a formal approach
based on the transformation of Solidity smart contracts, with consider-
ation of the BPM context in which they are used, into a Hierarchical
Coloured Petri net. We express a set of smart contract vulnerabilities as
temporal logic formulae and use the Helena model checker to, not only
detect such vulnerabilities while discerning their exploitability, but also
check other temporal-based contract-specific properties.

Keywords: Blockchain - Business process management + Model
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1 Introduction

Initially featured as the technology behind Bitcoin, Blockchain has soon after
escaped the box of cryptocurrencies to find its way into a multitude of applica-
tion domains, including that of Business Process Management (BPM). In fact, its
inherent characteristics, namely its decentralized nature, ability to provide trust
among trustless parties, immutability and financial transparency seem to deliver
the right tools to contrive adequate solutions for existing problems in BPM, espe-
cially for collaborations [20]. One of the promising integration possibilities of these
two fields is the design of Blockchain-based business processes (BPs). The gen-
eral preference has been to use an existing modeling language for BPs and adopt
Blockchain for different aspects of their management. For instance, Lorikeet [28] is
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a tool that leverages Blockchain as a message exchange mechanism for BP chore-
ographies. Caterpillar [16], on the other hand, is used to implement the BP model
and deploy it on the chain. This has been possible thanks to the concept of smart
contracts which allow the execution of sequences of interdependent transactions
while complying to the rules implemented within. In general, a BP can be analo-
gously viewed as a sequence of tasks linked by causal relationships with the aim of
achieving a business goal. Therefore, smart contracts seem to be ideal candidates
for the implementation and automation of BPs.

Despite the advance in the adoption of Blockchain for the BPM context, its
state is still nascent, and using smart contracts to carry on BPs cannot be con-
sidered safe. Many attacks with significant consequences on several blockchains,
exploiting hidden vulnerabilities in smart contracts and exposing the defective-
ness of the targeted applications bear witness to such a risk. In 2010, 92 billion
BTC were generated out of thin air by exploiting an integer vulnerability on
the Bitcoin blockchain [1]. The DAO attack on Ethereum exploited a reentrancy
vulnerability and resulted in 3.6M of stolen Ether [25]. A vulnerable blockchain-
based application does not have to be the target of an attack to malfunction.
For instance, the Parity multisig wallet was subject to an accident caused by a
self-destruction vulnerability in 2017 and resulting in freezing 500K of Ether [26].

Informal as well as formal methods have been proposed to ensure the cor-
rectness of smart contracts. While informal techniques can test a smart contract
under certain scenarios, they cannot be relied on to verify specific properties
defining its correctness. We note that we are interested in Ethereum smart con-
tracts as it is currently the second largest cryptocurrency platform after Bitcoin
besides being the inaugurator of smart contracts, and more particularly those
written in Solidity [2] as it is the most popular language used by Ethereum.

In this paper, we propose a model-checking-based approach for the verifi-
cation of Solidity smart contracts with a particular focus on those used in the
BPM context. Thanks to their ability to combine the analysis power of Petri
nets with the expressive power of programming languages, Coloured Petri Nets
(CPNs) [11] are suitable candidates for the modeling and verification of large
and complex systems, and therefore they are employed in our approach to model
the smart contracts execution with respect to a behavior specification defining
the workflow within which they are used. The result of this modelling step is
a hierarchical CPN (HCPN), on which we define a set of temporal properties
to express vulnerabilities as well as contract-specific properties relevant to both
data- and control-flows of the modelled smart contracts. We implement a pro-
totype that automates the generation of the HCPN model in the specification
language of Helena [9], the model checker we use for the verification of the
defined properties.

The remainder of this paper will be organized as follows: Sect.2 provides
an overview of related studies on formal verification of Solidity smart contracts.
Prerequisites on CPN and a brief overview on the representation of BP models
are given in Sect. 3, followed by a use case in Sect. 4. An overview of our proposed
approach is given in Sects. 5 followed by its detailed steps in Sect. 6. The formal
specification of some vulnerabilities and the application on the use case are
presented in Sect. 7. Finally, Sect. 8 concludes the paper.
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2 Related Work

Existing studies on formal verification of smart contracts follow mainly two
streams [10]: The first is based on theorem proving [3,5]. Approaches based on
this technique cannot be fully automated as the user usually has to intervene to
assist the prover. The second includes studies based on model checking, which is
where our work can be situated. Most of the studies under this second category
use symbolic model checking coupled with complementary techniques such as
symbolic execution [13] and abstraction [4]. The first attempt was Oyente [17], a
tool that targets four vulnerabilities and operates at the EVM bytecode level of
the contract. It generates symbolic execution traces and analyzes them to detect
the satisfaction of certain conditions on the paths which indicates the presence
of corresponding vulnerabilities. Numerous studies followed in the footsteps of
this work, some of which exploited some of its components in their implementa-
tions like GASPER [6] which reuses Oyente’s generated control flow graph, while
others extended it with the aim of supporting the detection of other vulnerabil-
ities, like Osiris [27]. Also based on symbolic model checking, Zeus [12] operates
on the source code of the contract. VeriSolid [18] is an FSM-based approach
that aims at producing a correct-by-design contract rather than detecting bugs.
The authors propose a transformation of a contract modeled as an FSM into a
Solidity code and provide the ability to specify intended behavior in the form of
liveness, deadlock freedom and safety properties expressed using templates for
CTL properties and checked by a backend symbolic model checker. The proposed
approaches usually use under-approximation which means that critical violations
can be overlooked. This explains the presence of false negatives and/or positives
in their reported results. We note that most of the existing studies target specific
vulnerabilities in contracts, and few are those that allow expressing customizable
control flow-related properties while none target data-related properties.

More recently, other attempts using CPN have been proposed. The work
in [15] shows an example of verification of behavioural properties applied man-
ually on a CPN model for a crowdfunding smart contract. It does not, how-
ever, propose a complete approach with generic transformation rules that can
be automated and applied to any contract. Another CPN-based proposition was
presented in [8]. This approach, despite being based on CPN, cannot be used for
the verification of data-flow related properties as the generated model focuses
on the representation of the workflow extracted from the contract’s CFG.

Our proposed approach aims at overcoming the stated shortcomings by pro-
viding the means to elaborate behavioural and contract-specific properties (in
the form of temporal properties) that can depend on the data-flow in the contract
and hence is not bound to a restricted set of reported vulnerabilities. Besides,
our approach relies on explicit model checking and that our transformation algo-
rithm operates on the source code as opposed to the bytecode. Hence, we avoid
the consequences of under-approximation and contextual information loss.
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3 Preliminaries

3.1 On Coloured Petri Nets

A Petri net [22] is a formal model with mathematics-based execution semantics.
It is a directed bipartite graph with two types of nodes: places (drawn as circles)
and transitions (drawn as rectangles). Despite its efficiency in modelling and
analysing systems, a basic Petri net falls short when the system is too complex,
especially when representation of data is required. To overcome such limitations,
extensions to basic Petri nets were proposed, equipping the tokens with colours
or types and hence allowing them to hold values. A large Petri net model can
therefore be represented in a much more compact and manageable manner using
a Coloured Petri net [11]. The formal definition of a CPN is given in Definition 1
and the main concepts needed to define its dynamics are given in Definition 2.

Definition 1 (Coloured Petri net). A Coloured Petri Net is a nine-tuple
CPN = (P7Ta A727MC;G,E,I), where:

1. P is a finite set of places.

2. T is a finite set of transitions such that PNT = (.

3. AC(PxT)U(T x P) is a set of directed arcs.

4. X is a finite set of non-empty colour sets.

5. V is a finite set of typed variables such that Type[v] € X, Vv € V.

6. C: P — X is a colour set function that assigns a colour set to each place.

7. G:T — EXPRy, where EXPRy is the set of expressions with variables in
V', is a guard function that assigns a guard to each transition t.

8. E: A— EXPRy is an arc expression function that assigns an arc expression

to each arc a such that Type[E(a)] = C(p)ns-
9. 1: P — EXPRy is an initialisation function that assigns an initialisation
expression to each place p such that Type[I(p)] = C(p)ms-

Definition 2 (CPN concepts). For CPN (P,T,A,X,V,C,G,E,I), we note:

1. A marking is a function M that maps each place into a multiset of tokens.

2. The initial marking My is defined by My(p) = I(p){) for all p € P.

3. The variables of a transition t are denoted by Var(t) C V.

4. A binding of a transition t is a function b that maps each variable v € Var(t)
into a value b(v) € Type[v]. It is written as (vary = valy, ...,var, = valy,).
The set of all bindings for a transition t is denoted B(t).

5. A binding element is a pair (t,b) such thatt € T and b € B(t). The set of all
binding elements BE(t) for a transition t is defined by BE(t) = {(¢,b)|b €
B(t)}. The set of all binding elements in a CPN model is denoted BE.

A transition is said to be enabled if a binding of the variables appearing in
the surrounding arc inscriptions exists such that the inscription on each input
arc evaluates to a multiset of token colours present on the corresponding input
place. Firing a transition consists in removing (resp. adding), from each input
(resp. to each output) place, the multiset of tokens corresponding to the input
(resp. output) arc inscription. For more details on CPN we refer readers to [11].
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3.2 On Business Process Modeling Representations

When it comes to business process modeling languages, controversy arises as to
whether imperative or declarative modeling approaches are better. An empirical
investigation [24] states that while imperative languages (e.g., Business Pro-
cess Model and Notation BPMN [23]) can be considered superior in terms of
comprehensibility by end-users, this fact’s accuracy can be influenced by the
experimental subjects’ familiarity with imperative modeling languages. On the
other hand, declarative modeling approaches (e.g. Dynamic Condition Response
DCR Graphs [21]) are considered less rigid than their counterpart and therefore
more suitable for rapidly evolving business processes. In fact, imperative models
represent how a process is executed by explicitly defining its control flow while
declarative models focus on why a process is executed in such a way by implic-
itly defining its control flow as a set of rules. Consequently, making changes
to an imperative model is more time-consuming and complex than altering a
declarative one, since the former would entail explicitly adding/deleting execu-
tion alternatives, which can call into question the correctness of the model, while
the latter could be achieved by adding/deleting constraints from the model to
discard/add execution alternatives. In our work, we do not support any claims
for the supposed superiority of any paradigm over the other.

Definition 3. A DCR graph is a tuple G = (E,M, Act,—e, 06— —+ —%,
—o,1) where M(G) =g4ey P(E) x P(E) x P(E) is the set of all markings:

1. E is the set of events, ranged over by e.

2. M € M(QG) is the marking of the graph.

3. Act is the set of actions.

4. —e e—C FE X E are the condition and response relations, respectively.

5. —+,—%C E X E are the dynamic include and exclude relations, respectively,
satisfying thatVe € E.e -+ Ne —% = 0.

6. —oC E x E is the milestone relation.

7. 1: E — Act is a labelling function mapping every event to an action.

A marking M = (Ex, Re,In) € M(G) is a triplet of event sets where Ex rep-
resents the set of events that have previously been executed, Re the set of events
that are pending responses required to be executed or excluded, and In the set
of events that are currently included. The idea conveyed by the dynamic inclu-
sion/exclusion relations is that only the currently included events are considered
in evaluating the constraints. In other words, if e is a condition for e’ (e —ee’),
but is excluded from the graph then it no longer restricts the execution of €.
Moreover, if €' is the response for e (ece—e¢’) but is excluded from the graph, then
it is no longer required to happen for the flow to be acceptable. The inclusion
relation e —+ €' (resp. exclusion relation e —% €') means that, whenever e is
executed, €' becomes included in (resp. excluded from) the graph. The milestone
relation is similar to the condition relation in that it is a blocking one. The dif-
ference is that it is based on the events in the pending response set. In other
words, if €' is a milestone of e (¢! —¢ e), then e cannot be executed as long as
€’ is in Re. For more details on DCR Graphs we refer the readers to [21].
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4 Use Case: Blind Auction

Our use case is adapted from [2]. Participants in a blind auction have a bidding
window during which they can place their bids. A participant can place more
than one bid and the placed bid is blinded. The bidder has to make a deposit
along the bid with a value that is supposedly greater than the real bid. Once the
bidding window is closed, the revealing window is opened. Participants proceed
to reveal their bids by sending the actual values of the bids along with the used
keys. The system verifies whether the sent values correspond with the placed
blinded bids and potentially updates the highest bid and bidder’s values. If the
revealed value of a bid does not correspond with its blinded value, or is greater
than the deposit, the said bid is considered invalid. Once the revealing window
is closed, participants can proceed to withdraw their deposits. A deposit made
along a non-winning, invalid or unrevealed bid is wholly restored. In case of a
winning bid, the difference between the deposit and the real bid is restored. The
auction is terminated when all participants withdraw their deposits. We propose
a design for such a blind auction system using a BPMN choreography diagram
as well as a DCR graph (Fig. 1). Listing 1.1 is an excerpt of the corresponding
Solidity contract. The full Solidity example can be found in our repository!.

.
() n " =
Place blinded bid . Request Place blinded . Request
3 Reveal bid {3» : a
p 'IIBII' <3 oreaThe withdrawal bid Reveal bids withdrawal
@ SN i 3 T 7
Blinded bid | Revealed 5o Withdrawal Pending
+deposit Bid + key | request returns L
) | 1 Y H Receive Receive Receive Withdraw]
S = Receive blinded bids revealed bids, requests
-8 % Receive Receive withdraw — 3
Lj) g blinded bids revealed bids requests —>e Eondmon re:a:on —’-:- \r\c\luslon rellancn
Start End ®——» Response relation ——»% Exclusion relation
< Avction Start Reveal 9] End Reveal 9) Auction| | Milestone refation  Ms = <0,0,{Place blinded bid)>

<+—Bidding window— <+—Revealing window—>

(a) Blind Auction: BPMN choreography (b) Blind Auction: DCR graph

Fig. 1. Blind auction workflow representations

contract BlindAuction {
struct Bid {bytes32 blindedBid; uint deposit;}
uint public biddingEnd, revealEnd, highestBid;
mapping (address => Bid[]) public bids;
address public highestBidder;
mapping (address => uint) pendingReturns;

modifier onlyBefore (uint
modifier onlyAfter (uint

_time) {require(now<_time);_;}
_time) {require(now>_time);_;}

constructor (uint

_biddingTime,

uint

_revealTime) public {...}

function bid(bytes32 _blindedBid) public payable onlyBefore(
biddingEnd) {...}
function reveal (uint[] values, bytes32[] secrets) public
onlyAfter (biddingEnd) onlyBefore(revealEnd) {...}
function withdraw() public onlyAfter (revealEnd) {
uint8 amount = pendingReturns[msg.sender];
if (amount > 0) {

! https://depot.lipn.univ-paris13.fr/garfatta/sol2cpn.
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if (msg.sender != highestBidder)
msg.sender.call.value (amount) ("");
else
msg.sender.call.value (amount-highestBid) ("");
pendingReturns [msg.sender] = 0;}}}

Listing 1.1. Excerpt of the Blind Auction smart contract in Solidity

5 Overview of our Formal Verification Approach

Our proposed approach for the verification of smart contracts is based on model
checking of CPN models and comprises mainly two phases:

1. A pre-verification phase: consists in transforming the smart contracts’ Solidity
code into CPN submodels corresponding to their functions.

2. A verification phase: consists in constructing a CPN model w.r.t an LTL
property that can express: (i) a vulnerability in the code or (ii) a contract-
specific property, linking it to a CPN model representing the behavior to be
considered, and feeding it the model checker to verify the targeted property.

Pre-verification

- ) Transformation
| Algorithm (1)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

| tfl[si]| ” tfi[si]

|
i
. i
I
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LS TR A B LT N
|

levelo M M | H
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+ Behavior ! |4""sf
specmcatlonJgI g°’/ll7

”781/0,,
( / ————————

4 Model ‘
|
1 Verified Property? | Checkmg\

I

i o F«444§
|
|

Behavior, Smart Contract. »
“ Layer Layer

Fig. 2. Overview of the approach

More precisely, we opt for a hierarchical CPN to represent the considered smart
contracts’ execution and interaction w.r.t the provided behavior specification.
As shown in Fig.2, we represent each function of a smart contract by an
aggregated transition that encapsulates a submodel corresponding to the inter-
nal workflow of the former. In fact, our aim at this pre-verification phase is to get
building blocks for the hierarchical model that will be fed to the model checker.
Then, given a behavior specification and an LTL property to be verified, the
final CPN model is built by (1) linking the aggregated transition representing
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the targeted function to the behavioral model and (2) building a hierarchy by
explicitly representing function calls in the submodel in question (if the checked
property requires it). In fact, function calls are initially abstracted and there-
fore represented by aggregated transitions in the model (e.g., tfilsi in Fig. 2)
under the assumption that they do not present behavioral problems (deadlock-
free and strong-livelock-free) which can be separately verified for each function.
Depending on the property to be verified, an aggregated transition may need to
be unfolded if any of its corresponding function’s instructions or variables are
involved in the property, hence the multi-level hierarchy in the model (e.g., in
Fig. 2, t73l51 in M7l is hidden and replaced by its submodel ij[sﬂ). It is kept
folded otherwise (e.g., t7*151 in M7Th1). This abstraction leads to a reduction
in the size of the state space the model checker needs to explore.

6 Generation of the Hierarchical CPN Model

In order to implement our approach, we propose a transformation algorithm for
the generation of the final HCPN model from the provided input artifacts.

6.1 Our HCPN Model: Defining Its Elements
Transitions T'. We distinguish two types of transitions in our model:

1. aggregated (T): used at the level-0 model for the representation of functions,
as well as at higher levels for the modular representation of function calls and
can be substituted by a submodel.

2. regular (T): simple unsubstitutable CPN transition.

For a transition ¢t € T" we note:

— t.st, the Solidity code associated to transition ¢

— t.metaColour, the metaColour associated to the control flow places of ¢ (if
teTH)

— t.data, the set of data places associated to transition ¢ (if t € T4)

— t.submodel, the CPN submodel associated to transition ¢ (if t € T4), with
t.submodel.inTransitions (resp. t.submodel.outTransitions) designating its
input (resp. output) transitions

— t.guard, the guard of the transition ¢

— ot[cf],t ® [cf] € Por U Ps, the input and output control flow places of ¢

— et[input] € Pp, the input parameters place of ¢

— et[data),t e [data] C Pyata, the input and output data places of ¢

— t o [output] € Pg, the output return place of ¢

Places P. For level-1 submodels, we define 4 types of places:
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— Control flow places Pcp are places created to implement the order of execu-
tion of the workflow. We also use them to carry data related to the state of
the smart contract which can be defined by its balance and the values of its
state variables. Such places have a metaColour defined at each aggregated
transition t® of level-0 as the concatenation of the state (i.e., the colour of
ot[cf] € Pg) and the input parameters (i.e., the colour of et[input] € Pp):
[uint: contractBalance, type,, : stateVariabley, ..., type,, : stateVariable,,
typep, : input Parameters, ... , typey, : inputParametery,].

— Data places Pjqtq (for internal local variables) where each place is of a colour
corresponding to the represented variable’s type.

— Parameter places Pp that convey potential inputs of function calls. Each
function call has an associated parameter place whose colour is as follows
[typey, : input Parametery, ..., type,, : input Parameter,|.

— Return places Pr that communicate potential functions’ returned data and
whose colours correspond to the return type of the called functions.

Two input places are created at the behavioral layer:

— a state place ps € Ps representing the state of the contract. Its colour
is as follows: [uint: contractBalance, type,,: stateVariabley, ..., type,, :
stateVariable, |

— a parameters place p, € Pp representing the input parameters of the function
in question.

Expressions E. Expression are constructs made up of literals, variables, func-
tion calls and operators, according to the syntax of Solidity, that evaluate to
single values:

— expressions with variables Ey: they make use of at least one local variable.
In such an expression e,, the set of variables used is accessible via e,.vars.

— expressions with function calls Er: they make use of at least one function
call. In such an expression e,, the set of function calls used is accessible via
ey.fctCalls

— explicit expressions Eg: they do not make use of variables nor function calls.

Statements S. A statement st € S can be either a compound statement
{st[1]; st[2]; ...; st[N]} (where Vi € [1..N], st[i] € S), or a simple statement
(strus, strus) (where stpgs € E and strys € E), or a control statement. A
simple statement can be:

— a function call statement, where:
o strps =0
o stryg.vars is the set of variables used in the arguments of the call (if
strus € Ey)
— an assignment statement, where:
e strys € By and stpgyg.vars contains the assigned variable
o strpg.vars is the set of variables used in the assignment (if stpys € Ev)
o stpps.fctCalls is the set of function calls used in the assignment (if
strus € Er)
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— a variable declaration statement, where:
e stiys € By and stpgg.vars contains the declared variable
e strps.type designates the type of the declared variable
e stpps.vars designates the set of variables used in the variable initializa-
tion expression (if the variable is initialized and stgrys € Ev)
e stpps.fctCalls is the set of function calls used in the variable initializa-
tion (if the variable is initialized stgrys € Er)
— a sending statement, where:
e strps designates the destination account
e stpps.vars designates the set of variables in the expression of the value
to be sent (if strgs € Ev)
o stpps.fctCalls is the set of function calls in the value to be sent (if
strus € Er)
— a returning statement, where:
o strps =0
e strpg.vars is the set of variables in the returned value (if stgrgs € Ev)
o stpps.fctCalls is the set of function calls in the returned value (if
strus € Er)

A control statement can be:

— a requirement statement of the form require(c)

a selection statement of the form if(c) then sty [else stp]

— a looping statement which can be:
e a for loop: for(init;c;inc) str
e a while loop: while(c) str

— where:
e ¢ is a boolean expression
e c.vars designates the set of variables used in the condition (if ¢ € Ey/)
o c.fctCalls is the set of function calls used in the condition (if ¢ € EF)
e stp, stp, init and inc are statements

6.2 Solidity-to-CPN: Building Blocks for the Smart Contract Layer

The first step is to build the level-0 submodels for the aggregated transitions of
the contract’s functions. To do so, we propose the algorithm GENERATELEVELO.

We define a CPN pattern for each Solidity statement type. Considering that
a function is a set of statements, CPN snippets are generated according to the
defined patterns and linked according to the function’s internal workflow. CRE-
ATESUBMODEL implements such correspondences. For lack of space, we only
include the transformation algorithm for a function call statement and the graph-
ical pattern (Fig.3) and description of a compound statement. The rest of the
algorithms and descriptions are available online (See footnote 1).
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Compound statement {st[1]; st[2]; ...; st[N]}. The algorithm is re-executed
on each component statement st[i], after creating N —1 control flow places (of the
metaColour colour) to interconnect the resulting CPN snippets while merging
the entering point of the snippet of st[1] with the entering point of the snippet
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Fig. 3. Compound statement pattern

of st and the exiting point of st[N] to that of the snippet of st.

B W =

Input : an aggregated transition ¢
Output: level-0 CPN submodel of ¢
Paata < 0
GETLOCALVARIABLES(1%.51; Pyy1q)

14 Piara

t?.sub < CREATESUBMODEL(1%,0,0)

(a) GENERATELEVELO

N M R W N =

: transition ¢, a function call
statement st = (sfzys, SRS ),
control flow input place pjy,
control flow output place p,;

Output: submodel for statement sz

create transition ¢/

create place Pparam;

create arc from pj, to tf

create arc from pparam, t0 tf

CONNECTLOCALVARS( frys.vars;t;t!)

CONNECTFUNCALLS( fgrys.-fctCalls;t)

create arc from ¢/ to Pour With a
placeholder inscription

Input

The hierarchy of the CPN model depends on the LTL property to be verified.
Such a hierarchy is achieved by unfolding targeted aggregated transitions as well

(b) BUILDFUNCTIONCALLST

1
2

w
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Input : 1, statement st, cf input place
Pin, cf output place poy;

Output: submodel of transition ¢

switch st do

case compound statement {st[1];

st[2];...; st[N]} do

BUILDCOMPOUNDSTATEMENT

(t;58;Pin;Pout)

end case

case simple statement do

switch st do

case ... do

eLd case

case function call

statement do

BUILDFUNCTIONCALLST]
(6;58:PinsPout)

end case

end switch

end case

end switch

(¢) CREATESUBMODEL

as potential aggregated transitions within their submodels?.

2 We note that if a place does not exist (p = 0) any arc creation involving it does not

take effect.
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Input : aggregated transition 1%, piy, Pour 7 end for
Output: submodel replacement of ¢ 8 for ¢’ € t9.sub.outTransition do
1 for ¢’ €t sub.inTransition do 9 replicate (arc from % to pyy,) to
2 replicate (arc from p;, to t%) to ¢/ ' with the placeholder inscrip-
3 replicate (arc from et[input] to 1) to ¢/ tion replaced by values from
4 for p € ot%|data) U t“|out put] do o'[cf]
5 ‘ replicate (arc from p to t%) to ¢’ 10 end for
6 end for 11 hide transition ¢ and all arcs linked to it

(d) UNFOLDTRANSITION

6.3 Behavior-to-CPN: Generation of the Behavioral Layer

We consider two types of behavior specifications for smart contracts:

(1) completely-free if no information is provided on the execution context of a
contract and (2) constrained if the context in which a smart contract is used is
provided (e.g., as a DCR Graph or a BPMN model). A CPN behavioral model
is added as an additional layer and linked to the hierarchical model built using
the previously generated CPN submodels.

Modeling a Completely-Free Behavior. In case no behavior is provided with
the smart contracts to be verified, we define a behavioral model to represent their
execution in a completely-free way. In such a model (see Fig. 4a) a place S is used
to represent the global state of the blockchain environment shared by all of the
smart contracts’ functions. For each function f; a place P; is used to represent
its input parameters. The marking of a place P; corresponds to all the possible
calling arguments for f;.

Modeling a Constrained Behavior. The user may want to define the behav-
ior of smart contracts. This can be captured either imperatively or declaratively.
Existing BPMN-to-CPN transformations [19] could be leveraged for an imper-
ative representation. For an example of a declarative one, we propose in the
following a formal translation of DCR to CPN.

Definition 4 (CPN4DCR). Given a DCR graph G = (E, M, Act, —e, e—
+,10), a corresponding CPN model CPN = (P, T,A,X,V,C,G,E,I) is defined
s.t.:

- P={S}

- T ={t;,Vi € [1,n]}, with n = |E| the number of events in G

- A={(t;,S),YieT}U{(S,t;),YieT}

- XY ={Cg,(Cg x Cg x Cg)}, where Cg is a colour defined as an integer type
(Cg = range INT) where each event e; € E is represented in Cg by its
indez.

-V ={Ez,Re,In,Ex’',Re’, In’}, with Type[v] = Cg,Yv € V

*O:{SH(CEXCEXCE)}

- G ={t; — guard;,¥i € [1,n]}, with n = |E|
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- F={a—<Ex,Re,In > Yaec AN(PUT)}U{a =< Ez/,Re’,In' > ,Va €
AN (T UP)} with (1) Ex’ = ExUe;, (2) Re’ = (Re\e;) U ee— and (3)
In’ = (InUe; —+)\e =%

- I={S —<851,852,53 >} with < S1,S52,53 > the initial marking M of G

For all t; € T representing an event e; in the DCR graph, we further precise
that:

— guard; is the conjunction of the conditions defining the enabling of the corre-
sponding event (1) e;:i € In, (2) (—eiNIn) € Ex and (3) (—oiNIn) € E\Re

— the expression < Ex’', Re',In’ > on its output arc is defined such that: (1)
Ex' = Ex Ui, (2) Re' = (Re\i) Uie— and (3) In' = (InUi —+)\i =%

Theorem 1. Let G be a DCR graph and C the corresponding CPN model gen-
erated by following definition 4, then G and C are semantically equivalent.

We include a proof of this theorem in our repository (See footnote 1).

’

oS uiiof

. = [guard;] [guard,,]

(a) CPN model for a completely-free behavior
(b) CPN model for a DCR Graph

Fig. 4. Behavior representations

7 Model Checking: On the Blind Auction Use Case

Given the HCPN model generated by the application of our transformation algo-
rithm on the input smart contracts along with the LTL property to check and the
behavior specification, we use Helena [9] to verify the validity of the considered
LTL property on our model. Such a property can express either a predefined
vulnerability, or a contract-specific property. In fact, many vulnerabilities have
been identified in the literature [7], and the user may want to check the presence
of certain bugs in a smart contract. To prove the ability of our approach to detect
vulnerabilities, we propose LTL formulae to express common vulnerabilities. We
then apply our approach on our use case and showcase its capability to detect
vulnerabilities as well as check contract-specific properties.
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7.1 Expressing Vulnerabilities in LTL

We consider here one of the most common vulnerabilities in Solidity smart con-
tracts. More vulnerabilities are explained and expressed in LTL in our repository
(See footnote 1). In the following, tfi denotes the CPN aggregated transition for
function f in smart contract s;.

Integer Overflow/Underflow: Due to Solidity’s lack of safeguards on
mathematical operators, errors such as overflows and underflows may occur as
a result of violation of value limitations of integer data types. For instance, the
wint8 amount variable in the BlindAuction contract can be the source of such
a vulnerability when the pendingReturns of a bidder exceeds 255. Due to Solid-
ity’s wrapping in two’s complement integer representation, amount will contain
a wrong value, causing an incorrect execution.

In our CPN model, we define correspondences between the types used in
the Solidity language and those offered by helena so that they cover the same
ranges. The model checker is therefore able to detect when the smart contract
contains an out-of-range expression. It does not, however, pinpoint the source
of the anomaly, so the user does not have much information to go on to track it
and try to correct it. To overcome this deficiency, we propose to model integer
overflows/underflows as a safety LTL property that can be verified on a specific
variable x to check:

1UO, = O-21sOutO f Range

where zIsOutOfRange is a proposition defining the conditions for overflow and
underflow for x w.r.t the range of its type which we delimit by defining lower
and higher thresholds:

xIsOutO f Range = (x < minThreshold) V (x > maxThreshold)

7.2 Application on the Use Case

The application of our approach on the use case (Sect.4) yields a HCPN model
whose level-0 submodels are created by the execution of CREATESUBMODEL. For
lack of space, we choose to include the submodel for withdraw in Fig. 5.

/
1
|
1
|
|

|
P22 TP21 1F  withdraw
Paramt:aters

Fig. 5. SubModel of transition withdraw

Verifying properties of the contract would come down to verifying properties
on the corresponding CPN model. For model checking, we chose Helena [9] which
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offers explicit model checking support for on-the-fly verification of state and LTL
properties over CPN models. We have generated the CPN models of our use case
in Helena’s specification language using our prototype for the transformation
algorithm, while considering a free behaviour as well as the BPMN and DCR
specifications as presented in Sect.4. We have then written the corresponding
properties in Helena’s language for the vulnerabilities in Sect. 7.1 and were able
to detect them. We have also established other contract-specific properties that
we were able to verify on our example. Figure 6 shows the corresponding property
written in Helena for the ITUO LTL property applied on the variable amount in
BlindAuction and Fig. 7 is a snippet of the result of the model checker showing
the detection of the vulnerability with a counter example.

Fig. 6. The integer overflow/underflow LTL property in Helena

Search report

Action performed
property checking
Host machine
Ikramz (pid = 60511)
Property checked
Iuo
Termination state
PROPERTY_VIOLATED

Statistics report

24 places
28 transitions
72 arcs

Trace report

The following run invalidates the property.

s =<( {0, 0,0, ||, false, 0} )>

Fig. 7. Model checking result

The artifacts used in this verification as well as a detailed report on the
results and the prototype implementation can be found at this repository (See
footnote 1).

8 Conclusion

The combination of the Blockchain technology and the BPMN domain has been
an evident step, especially considering the assets that the former brings to the lat-
ter. It is still crucial, however, to guarantee the correctness of the smart contracts
involved in this association to ensure its safety. Existing verification approaches
are generally designed to target specific vulnerabilities which have been reported
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to be the root of some attacks or malfunctions. Checking the absence of vulnera-
bilities in a smart contract, however necessary, does not guarantee its correctness
as a faulty behaviour may stem from a flaw specific to that contract. With our
approach we aim to bring a solution to this problem by providing a way to for-
mally verify contracts by both checking for vulnerabilities in the code and offering
the possibility to express additional contract-specific properties to check. In this
paper, we focus on extending our approach to take into account the context in
which the smart contracts to be verified are executed as a behavior specification,
while also considering the case where no such specification is provided. To fur-
ther improve the Helena’s performance, we intend to work on Helena’s model
checker by embedding it with an extension to an existing technique previously
developed to deal with the state space explosion problem in regular PNs [14]
and applying it on CPNs.
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