Integrating Business Process Context into
Solidity-to-CPN Formal Verification

Ikram Garfatta
Institut Mines-Télécom,
Télécom SudParis,
SAMOVAR UMR 5157
Evry, France
Email: ikram_garfatta@telecom-sudparis.eu

Abstract—Smart contracts, which are self-executing agree-
ments, have a huge range of possible uses from finance to supply
chain management. To avoid costly errors and vulnerabilities, it
is crucial to guarantee the accuracy and reliability of these con-
tracts. This paper explores the convergence of Blockchain tech-
nology, particularly Ethereum’s smart contracts, and Business
Process Modeling (BPM), capitalizing on the synergies between
these domains. We propose that viewing smart contracts as akin
to business processes can significantly enhance the verification of
Blockchain-based applications, addressing critical challenges in
smart contract correctness and security. In this work we employ
a formal verification approach based on Coloured Petri Nets
and Linear Temporal Logic to detect potential vulnerabilities
in Solidity smart contracts while considering their behavioral
context as a business process model.

Index Terms—Solidity; Business Process Modeling; Formal
Verification; Coloured Petri Nets; Linear Temporal Logic.

I. INTRODUCTION

Blockchain technology, with its security and transparency
features, has revolutionized industries by providing a de-
centralized platform for secure transactions. Smart contracts,
within this ecosystem, automate digital agreements, holding
potential applications from finance to supply chain manage-
ment. However, ensuring their reliability is crucial to avoid
costly errors and vulnerabilities.

Numerous attacks on Blockchain platforms have exploited
hidden vulnerabilities in deployed smart contracts, showcasing
significant risks. The first major attack occurred in August
2010, generating 92 billion BTC due to an integer overflow in
the Bitcoin Blockchain [1]]. The DAO attack in June 2016 [2]],
caused by a reentrancy vulnerability, led to the theft of 3.6M
ether and a hard fork in the Ethereum Blockchain. The Parity
multisig wallet experienced two substantial attacks, resulting
in the theft of more than 150K ETH in July 2017 and the
locking of 513K ETH in November 2017 [3].

In parallel, the field of Business Process Modeling (BPM)
has evolved as a critical discipline in streamlining and op-
timizing organizational operations. Business processes are
fundamental to the core functions of any organization, guiding
workflows and decision-making. Remarkably, there is a strik-
ing resemblance between the structure of smart contracts and
that of BP models. In fact, the intended behaviour of smart

Kais Klai
University Sorbonne Paris North,
LIPN UMR CNRS 7030
Villetaneuse, France
Email: kais.klai @lipn.univ-paris13.fr

Walid Gaaloul
Institut Mines-Télécom,
Télécom SudParis,
SAMOVAR UMR 5157
Evry, France
Email: walid.gaaloul @telecom-sudparis.eu

contracts can intuitively be represented using a BP represen-
tation that would characterize the context in which the smart
contracts are supposed to be executed. Such a behavioural
context can either come directly as a description of a business
model or be derived from a script that would be used to invoke
the smart contracts. In our work, we explore the convergence
of the Blockchain technology, specifically through its smart
contracts, and BPM, leveraging the synergies between these
domains. We posit that viewing smart contracts as analogous to
BPs can significantly enhance the verification of Blockchain-
based applications and we aim to address critical challenges
related to smart contract correctness and security.

In our work, we are interested in smart contracts written
in Solidity [4], Ethereum’s primary language. We expand on
our formal approach for the verification of Solidity smart
contracts [S]] and focus on its adaptation to detect the potential
presence of vulnerabilities with the possibility of taking into
account their behavioural context as a BP model.

The general approach is based on model checking as a for-
mal verification method applied on Coloured Petri Net [6] as a
representation formalism and using Linear Temporal Logic [[7]
to express the properties to be verified and vulnerabilities to
be detected. Thanks to their ability to combine the analysis
power of Petri nets with the expressive power of programming
languages, Coloured Petri Nets [[6] (CPNs) are suitable for the
modeling and verification of complex systems, and therefore
they are employed in our approach to model the contracts
execution with respect to a behavioral context specification
defining the workflow within which they are used.

To explain this approach in more detail, we depict its dif-
ferent stages in Figure |1} This approach comprises mainly five
steps: (1) transformation of the smart contracts’ Solidity code
into CPN sub-models corresponding to their functions [5], (2)
transformation of the behavioural context specification into a
CPN model, (3) expression of the properties/vulnerabilities to
be verified in LTL, (4) generation of a Hierarchichal CPN
(HCPN) model, and (5) model checking of the generated
HCPN model w.r.t to the specified LTL property. This is the
final step that puts together all the pieces of the approach.

The paper is organized as follows: Section [l reviews related
studies on formal verification of Solidity smart contracts.

Pre-verification

input A

. —-_ l Transformation |

| { ;_l | Algorithm (1) :

\ 1 —
P i

| {f1g,..,fisi,...,fng, : |

| l { Level-0

|

I flsy /fISJ) /fnsj} :

fl[sl Mfl[sl] fn[5| :
submodels ' [
|

________/

Transformation

|+ Behavior 1, 7sf,, ot
|_specification/g ~"thn o1
(o T Model
Verified Property? ! S|
perty : Checkingi

i"w

output

¢ Behavior. »<

Algorithm (I11)

Smart Contract,

Layer

Layer

Fig. 1: Overview of the approach

Prerequisites on CPN, LTL, and BP model representation are
provided in Section [[Tl} Section [[V]explains the transformation
of smart contracts into CPN. Section [Vl formalizes the context
of smart contract representations. Vulnerabilities are specified
in Section perspectives are outlined in Section and
conclusions are drawn in Section [VIIIl

II. RELATED WORK

Efforts on the verification of smart contracts diverged be-
tween informal methods and formal verification approaches.
Informal techniques provide quick checks within specific sce-
narios but lack guarantees of correctness. On the other hand,
formal verification techniques offer more rigorous checks but
may face scalability challenges.

Existing studies on formal verification of smart contracts
follow two main streams [8]]. The first group of studies is
based on theorem proving [9], [10]. The general idea of
such approaches is to transform the contract’s code (often its
corresponding EVM bytecode) into a code processable by a
theorem prover and use the latter to discharge proofs on the
correctness of the generated code. Such a verification is not
automated and requires the user’s expertise to manipulate the
prover and manually intervene in discharging proofs.

The second group of studies is based on model checking.
Most of these studies use symbolic model checking cou-
pled with complementary techniques. The first attempt was
Oyente [11], a tool that operates at the EVM bytecode level,
generating symbolic execution traces and analyzing them to
detect the presence of four vulnerabilities. Numerous studies
followed such as GASPER [12] which reuses Oyente’s gener-
ated control flow graph for the detection of bytecode patterns
with high gas costs, and Osiris [13]] that extends it to support
the detection of other vulnerabilities.

VeriSolid [14] aims at producing a correct-by-design contract

rather than detecting bugs by transforming a contract modeled
as an FSM into a Solidity code and specifying intended
behavior using templates for Computation Tree Logic (CTL)
that are checked by a backend symbolic model checker.

More recently, attempts have been made to use Coloured
petri net for the verification of smart contracts. The work
in [15] shows an example of verification of behavioural
properties on a CPN model for a crowdfunding smart contract.
It does not, however, propose a complete and generic approach
to automatically apply on any smart contract. Another CPN-
based proposition was presented in [[16] where Hoare’s logic
is used to generate a CPN model from a contract’s bytecode
which is then used for the security analysis of the contract.
This approach, however, cannot be used for the verification
of data-flow related properties as the generated model focuses
only on the representation of the workflow of the contract.

To conclude, we note that approaches based on symbolic
execution usually use under-approximation which means that
critical violations can be overlooked. Moreover, most of
the existing studies target specific vulnerabilities in smart
contracts, as opposed to verifying customizable properties
(more specifically, none of these studies target data-related
properties). Besides, most of the proposed approaches operate
on the EVM bytecode rather than on the Solidity code which
results in loss of contextual information and limits the range
of properties that can be verified on the contract.

Our proposed approach aims at overcoming such shortcom-
ings by providing the means to verify both behavioural and
contract-specific properties that can depend on the data-flow
and hence is not bound to a restricted set of vulnerabilities.
Besides, we note that our approach relies on an explicit model
checking technique and that our transformation algorithm op-
erates on the source code, therefore avoiding the consequences
of under-approximation and contextual information loss.

III. PRELIMINARIES
A. On Coloured Petri Nets

A Petri net [17] is a formal model with mathematics-based
execution semantics. It is a directed bipartite graph with two
types of nodes: places (drawn as circles) and transitions (drawn
as rectangles). A Coloured Petri net [6] is an extension of Petri
net that equips the tokens with colours or types, hence allowing
them to hold values. The formal definition of a CPN is given
in Definition and the main concepts needed to define its
dynamics are given in Definition [3.2]

Definition 3.1 (Coloured Petri net): A Coloured Petri Net
is a nine-tuple CPN = (P, T, A,%,V,C,G, E, I), where:

1) P is a finite set of places.

2) T is a finite set of transitions such that PNT = .

3) AC(PxT)U(T x P) is a set of directed arcs.

4) X is a finite set of non-empty colour sets.

5) V is a finite set of typed variables such that Type[v] €

Y, YveV.

6) C: P — X is a colour set function that assigns a colour
set to each place.

7y G : T — EXPRy, where EXPRy is the set of
expressions with variables in V, is a guard function that
assigns a guard to each transition .

8) F : A — EXPRy is an arc expression function
that assigns an arc expression to each arc a such that
TypelE(a)] = C(p)ms-

9 I : P - EXPRy is an initialisation function that
assigns an initialisation expression to each place p such
that Type[I(p)] = C(p)ms-

Definition 3.2 (CPN concepts): For a

(P,T,A%,V,C,G, E,I), we note the following:

1) A marking is a function M that maps each place into a
multiset of tokens.

2) The initial marking My is defined by My(p) = I(p)()
for all p € P.

3) Var(t) CV denote the variables of a transition t.

4) A binding of a transition ¢ is a function b that maps each
variable v € Var(t) into a value b(v) € Type[v]. It is
written as (var; = valy,...,var, = val,). The set of
all bindings for a transition ¢ is denoted B(t).

5) A binding element is a pair (¢,b) such that ¢ € T" and
b € B(t). The set of all binding elements BE(t) for a
transition ¢ is defined by BE(t) = {(¢,b)|b € B(t)}.
The set of all binding elements is denoted BE.

CPN

For more details on CPN we refer readers to [[6].

B. On Business Process Modeling Representations

When it comes to business process modeling languages,
controversy arises as to whether imperative or declarative mod-
eling approaches are better. An empirical investigation [18§]]
states that while imperative languages (e.g., Business Process
Model and Notation BPMN [19]) can be considered superior
in terms of comprehensibility by end-users, this fact’s accuracy
can be influenced by the experimental subjects’ familiarity
with imperative modeling languages. On the other hand,

declarative modeling approaches (e.g. Dynamic Condition Re-
sponse DCR Graphs [20]) are considered less rigid than their
counterpart and therefore more suitable for rapidly evolving
business processes. In fact, imperative models represent how
a process is executed by explicitly defining its control flow
while declarative models focus on why a process is executed
in such a way by implicitly defining its control flow as a
set of rules. Consequently, making changes to an imperative
model is more time-consuming and complex than altering
a declarative one, since the former would entail explicitly
adding/deleting execution alternatives, which can call into
question the correctness of the model, while the latter could
be achieved by adding/deleting constraints from the model
to discard/add execution alternatives. In our work, we do
not support any claims for the supposed superiority of any
parabusinessdigm over the other.

Definition 3.3: A DCR graph is a tuple G =
(E,M,Act,—e, 08—, —+ =%, —0,l) where M(G) =45
P(E) x P(E) x P(E) is the set of all markings:

1) E is the set of events, ranged over by e.

2) M € M(QG) is the marking of the graph.

3) Act is the set of actions.

4) e, e—C F x E are the condition and response

relations, respectively.

5) =+,—-% C E x E are the dynamic include and
exclude relations, respectively, satisfying that Ve €
E.e—>+ne—%=0.

6) —oC FE x E is the milestone relation.

7) l: E — Act maps every event to an action.

A marking M = (Ex, Re,In) € M(G) is a triplet of event
sets where E'x represents the previously executed events, Re
the pending responses required to be executed or excluded,
and In the currently included events.

For more details on DCR Graphs we refer readers to [20].

C. On Linear Temporal Logic

The approach presented in this paper is primarily based on

model checking of CPN models w.r.t formulae expressed in
Linear Temporal Logic (LTL). This logic was first introduced
in [7] as a means to reason about concurrent programs.
An LTL formula is evaluated over an infinite sequence of
indexed states (z = 0, 1,2, ...) where each point in time has a
unique successor, starting from an ¢’th state. It contains a finite
set Prop of atomic propositions, the usual Boolean operators
(=, A, V, and —), in addition to temporal operators (Until: I/,
Next: X' or O, Globally: G or [J, Future: F or ¢).

Definition 3.4 (LTL formula): An LTL formula can be
inductively defined as follows:

e Vp € Prop, p is an LTL formula.

e If ¢ and v are two LTL formulae, then =, o A, V),

=, U Y, X ¢, G and F ¢ are LTL formulae.

IV. SoLIDITY-TO-CPN TRANSFORMATION

The main and first step of our proposed approach consists
in the transformation of Solidity smart contracts functions into
CPN sub-models which are later used as building blocks for

the final HCPN model. This step has been first introduced
in [21] and then presented in more detail in [S)]. Here, we give
a brief idea on this step and its role in our global approach.

A smart contract function is seen as a set of statements.
To each one of the statement types a corresponding pattern
in CPN is defined, according to which a snippet of a CPN
model is generated. The general idea of the transformation
process is to browse the body of each function, statement
by statement, recursively, and to create snippets of a CPN
model according to the type of the processed statement that
interconnect to create the function’s sub-model. The statement
types considered in [5] are as follows: A statement st € S
can be either a compound statement {st[1]; st[2]; ...; st[N]}
(where Vi € [1..N], st[i] € S), or a simple statement
(stpms,strus) (where stpgs and stpys are expressions),
or a control statement. A simple statement can be: (i) a
function call statement, (i) an assignment statement, (iii) a
variable declaration statement, (iv) a sending statement, or
(v) a returning statement. A control statement can be: (i) a
requirement statement, (ii) a selection statement (single- or
double-branching) or (iii) a looping statement (for or while).

We note that the Solidity supported components can be seen
as exhaustive in that they can be used to rewrite smart contracts
with more syntactic sugar, even though [5] did not consider
all of the Solidity elements (e.g., do while loop).

V. CONTEXT TRANSFORMATION

We recall that the desired behavior of smart contracts can
be intuitively depicted using a business process representation
that would describe the context in which the smart contracts
are intended to be used. Herein we are interested in the genera-
tion of the context’s CPN sub-model for such a representation.
We consider two types of behavioral context specifications:

1) completely-free if no information is provided on the
execution context of a contract (Section

2) constrained if the context in which a smart contract is
used is provided (e.g., as a DCR Graph) (Section [V-B).

A. Completely Free Behavioural Context

If no behavioral context specification accompanies the smart
contracts for verification, we define a CPN model to depict
their execution freely. In this model (refer to Figure [2), a
place S represents the blockchain environment’s global state
shared across all smart contract functions. Each function f; is
represented by a place P; for its input parameters, with the
initial marking encompassing all possible calling arguments
for f;. Here’s the formal definition of CPN4Free, our proposed
CPN model for this free context representation.

Definition 5.1 (CPN4Free): Given a set of smart contracts
SSC = {SC;,Vi € [1,n]}, such that n is the number of
smart contracts to be verified and VSC; € SSC,SC; =
(fji,vni), ¥ € [1,n], VR € [1,m;] where n; is the number of
functions in SC; and m; is the number of global variables in
SC;, we denote by Paramj; = {param¥;, vk € [1,n;]},
the set of input parameters of the function f;; such that
nj; is the number of such parameters. A corresponding CPN

model CPN4Free = (P, T,A,X,V,C,G, E,I) (depicted in
figure 2) is defined as follows:
« P={S}U Ppamm, where Pporem = Uie[l’n] P;, such

that Vi € [1,n], P, = {p;;,Vj € [1,n,]}

o« T = Uze[l,n T, such that Vi € [1 ’I’L],T‘Z = {tﬂ,Vj S
[, 4]}

« A = {(ti,S),Vti S T} U {(S,ti),Vti S T} U
{(pjirtji), Vpji € Pi,Vizi € Ty, Vi € [1,n]}

« X = {Cs} U {CPJ.MVZ' € [1,n],Vj S
(1,n;]}, where Cp, = [typepamml :
paramjl-i, ...,typepamm?iﬂ paramﬂ] and
Cs = [uint ~ contractBalance, type,,,
1111, s tYPey,, . Vm,n] X Cpyy X ... x Cp,,

. = {z,2'} U {vp;;,Vi € [L,n], Vj € [1, nl]} with
Type[| = Type[z'] = Cs and Type[vp;i] = Cp,,,Vi €
[1,n],Vj € [1,n]

« C= {S — Cs} U {p” — iji,iji € P,,Vi e [1,77/]}

° G -

. f{a%x,VaGAﬂ({S}xT)}U{a%x',VaE
Aﬂ(fx{S})}ﬂEpamm, where Epgram = Uie[l,n]{a —

o I = {p — init,,Vp € P}, where init, is a predefined
initialisation that depends on the type of the place.

up11 UPnpn
t11 S tn,n
! T

Fig. 2: CPN model for a completely-free behavioural context

B. Constrained Behavioural Context

The behavior of smart contracts can be represented either
imperatively or declaratively. We’ll focus on integrating declar-
ative representations, namely DCR graphs, into our work,
given that existing BPMN-to-CPN transformations [22], [23]]
for an imperative representation could also be leveraged. Our
approach involves transforming DCR graphs into CPN models
to verify smart contracts while ensuring semantic equivalence.

1) CPN4DCR - Initial Model: We give the formal definition
of the initial CPN4DCR model that we propose and showcase
its capabilities and limitations for LTL model checking.

Definition 5.2 (CPN4DCR): Given a DCR graph G =
(E,M, Act,—~e ,e— +,1), a corresponding CPN model
CPN4DCR = (P, T,A,%,V,C,G,E,I) (depicted in fig-
ure [3) is defined as follows:

« P={S}

o T ={t;,Vi € [1,n]}, with n = |E|

« A= {(ti,S),Vti S T} U {(S, ti),Vti S T}

e ¥ = {Cg,(Cg x Cg x Cg)}, where Cg is a colour
defined as an integer type (Cr = range INT) where
each event e; € E is represented in C'g by its index.

e V.= {FExz Re In,Ex',Re',In'}, with Type[v] =
Cg,YveV

° C:{S%(CEXCEXCE)}

o G ={t; = guard;,Vi € [1,n]}, with n = |E|

e £ ={a— (Ex,Re,In),Ya € AN(PxT)}U{a —
(Ex',Re’, In"),Ya € AN (T x P)} with

- B2’ = FExUe;,
- Re’ = (Re\e;) U ee— and
- In' = (InUe; =-+)\e =%

o« I = {S — <Sl,52,53>} with <Sl,52,53> the initial

marking M of G
For all t; € T representing an event e; in the DCR graph, we
further precise that:

e guard; is the conjunction of the conditions defining the
enabling of the corresponding event e;:

1) i €lIn,
2) (—eiNlIn) € Ex and
3) (—oinlIn) € E\Re

« the expression (Ex’, Re’, In’) on its output arc is defined

S.t.:
1) Ex' = Ex Ui,
2) Re' = (Re\i)Uie— and
3) In' = (InUi—+)\i =%

&x’,}%eﬂ In')

tn

S

(Ez, Re, In)

t
Y [{Ex R, In'y (Ex, Re,In)

[guardi] [guardy,]

Fig. 3: Initial CPN4DCR

VI. FORMALIZING VULNERABILITIES

In line with Section |} our approach employs model check-
ing to verify LTL properties that articulate the vulnerability
susceptibility of contracts. We start by expressing each targeted
vulnerability in LTL. For further insight into the vulnerabili-
ties’ definitions, we direct readers to [24].

A. Expressing Vulnerabilities in LTL

Here, M Sf represents the CPN submodel for function f in
smart contract s;. It’s important to note that at times, we em-
ploy parameterized propositions, indicating their application
to an unspecified aggregated transition. These propositions
require explicit definition for each transition to be Veriﬁedﬂ
For lack of space, we only include 2 vulnerabilities out of the
6 that we support in our work.

INot to be confused with first order predicates

1) Integer Overflow/Underflow: In our CPN model, we
define correspondences between the types used in Solidity and
those offered by helena so that they cover the same ranges.
We propose to model integer overflows/underflows as a safety
LTL property that can be verified on a specific variable x:

1UO, = O-x1sOutO f Range

Where xIsOutOfRange is a proposition that evaluates to true if
the value of z is not included in the range of its type which we
delimit by defining lower and higher thresholds (minThreshold
and maxThreshold respectively).

xIsOutO f Range =(z < minThreshold)
V (z > mazThreshold)

2) Reentrancy: This vulnerability is related to functions
that contain instructions responsible for Ether transfer, and
therefore is applied w.r.t a function containing a sending state-
ment. Given such a function, we propose two LTL properties.
The first is a safety property defined as follows:

ReentrancyM&fi = DﬁreentrantMsfi

Where reentrant s is true if the necessary condition under
which a reentrancy vulnerability can be detected in the func-
tion f in the smart contract s; is valid. This condition can only
be defined when the user indicates the variable x serving as a
record for balances and whose assignment should be watched.
Such a condition expresses the presence of a sending statement
which is not preceded by an assignment to x:

reentrantMsfi = (=X Assignment)U Sending

Where XAssignment is true when a statement is an assignment
to the variable x and Sending is true when a statement is a
sending one. A vulnerability is detected when Reentrancy(tﬁi)
evaluates to false. This property is used when we only have
the code of the smart contract to be verified (i.e., a totally
free behaviour). If the code of the interacting contract s; is
available, we propose the following LTL property:

Reentrancy,,;; =SendingTos; — OU((—SendingTos)
U endO f Fallbacks,)

Using this we can verify that once the sending statement is
executed (SendingTos; is true), it cannot be executed again
until the fallback function of the receiving contract has finished
(endOfFallbacks; is true) i.e., no reentrancy can happen.

VII. PERSPECTIVES

Our work has introduced a novel approach for verifying
Solidity smart contracts within a business-process-based be-
havioral context. However, there are exciting avenues for
future research. Currently, we are focused on developing a ded-
icated software tool automating the transformation of Solidity
contracts into CPNs and conducting LTL property verification.
This tool aims to simplify the use of formal methods, making
them accessible to a broader audience of developers and
auditors. Figure [] illustrates the workflow of our ongoing tool

development. The graphical tool EL streamlines our approach
with user-friendly interfaces, expanding its accessibility.

Fig. 4: Architecture of the Solidity2CPN tool

Our next objective is to expand our work to accommodate
other behavioral context representations, particularly those
emerging from the integration of Blockchain technology with
the Internet of Things (IoT). We aim to enhance our cur-
rent approach for verifying Blockchain-based IoT applications
by supporting behavioral context specifications delivered as
Node-Red applications [25]. This involves converting Node-
Red apps utilizing smart contracts to manage and manipulate
data from IoT devices into CPN models. Subsequently, we will
apply the same verification approach as in our current work
to ensure the correctness of these applications.

VIII. CONCLUSION

Existing verification methods typically target specific vul-
nerabilities identified as the root cause of attacks or malfunc-
tions. However, solely checking for vulnerabilities in a contract
does not ensure its correctness, as flaws unique to that contract
could lead to faulty behavior. Our approach addresses this
issue by offering a formal verification method that not only
checks for vulnerabilities but also allows for the expression of
additional context-related properties to verify smart contracts.
In this paper, we extend the approach in [S]] to incorporate
the execution context of the smart contracts as a behavioral
specification, considering scenarios where such specification
is not provided. We also formalize a set of vulnerabilities in
LTL to support their detection using our approach.

REFERENCES

[1] “Overflow incident.” [Online].
Value overflow_incident

[2] D. Siegel, F. Yue, B. Keoun, M. Shen, A. Engler, and B. Dale, “The dao
attack: Understanding what happened,” Dec 2020. [Online]. Available:
https://www.coindesk.com/understanding-dao-hack-journalists

[3]1 S. Team, “Parity multi-sig wallets funds frozen (ex-
plained),” 2021. [Online]. Available: https://www.springworks.in/blog/
parity-multi-sig- wallets- funds-frozen-explained/

[4] “Solidity documentation,” https://docs.soliditylang.org/en/latest/.

[5]1 1. Garfatta, K. Klai, M. Graiet, and W. Gaaloul, “A solidity-to-cpn
approach towards formal verification of smart contracts,” in 30th I[EEE
International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises, WETICE 2021, Bayonne, France, October
27-29, 2021. IEEE, 2021, pp. 69-74.

Available: |https://en.bitcoin.it/wiki/

Zhttps://soliditycpn.lipn.univ-paris13.fr/

[6]

[7]

[8

[t

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

(22]

(23]

[24]

[25]

K. Jensen and L. M. Kristensen, Coloured Petri Nets: Modelling
and Validation of Concurrent Systems, lst ed. Springer Publishing
Company, Incorporated, 2009.

A. Pnueli, “The temporal logic of programs,” in Annual Symposium on
Foundations of Computer Science, Providence. IEEE Computer Society,
1977, pp. 46-57.

I. Garfatta, K. Klai, W. Gaaloul, and M. Graiet, “A survey on formal ver-
ification for solidity smart contracts,” in ACSW °21: 2021 Australasian
Computer Science Week Multiconference, Dunedin, New Zealand, 1-5
February, 2021. ACM, 2021, pp. 3:1-3:10.

K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy, and S. Z. Béguelin, “Formal verification of smart contracts:
Short paper,” in Proceedings of the 2016 ACM Workshop on Program-
ming Languages and Analysis for Security, PLAS@CCS 2016, Austria,
October 24, 2016.

S. Amani, M. Bégel, M. Bortin, and M. Staples, “Towards verifying
ethereum smart contract bytecode in isabelle/hol,” in Proceedings of the
7th ACM SIGPLAN International Conference on Certified Programs and
Proofs, NY, USA, 2018, p. 66-77.

L. Luu, D. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Austria, October 24-28,
2016, 2016, pp. 254-269.

T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart contracts
devour your money,” in IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering, SANER 2017, Austria, February
20-24, 2017, pp. 442-446.

C. F. Torres, J. Schiitte, and R. State, “Osiris: Hunting for integer bugs in
ethereum smart contracts,” in Proceedings of the 34th Annual Computer
Security Applications Conference, ACSAC 2018, PR, USA, December
03-07, 2018, pp. 664-676.

A. Mavridou, A. Laszka, E. Stachtiari, and A. Dubey, “Verisolid:
Correct-by-design smart contracts for ethereum,” in Financial Cryptog-
raphy and Data Security - 23rd International Conference, FC 2019, St.
Kitts and Nevis, February 18-22, 2019, 2019, pp. 446-465.

Z. Liu and J. Liu, “Formal verification of blockchain smart contract
based on colored petri net models,” in 43rd IEEE Annual Computer
Software and Applications Conference, COMPSAC 2019, USA, July 15-
19, vol. 2. 1EEE, 2019, pp. 555-560.

W. Duo, X. Huang, and X. Ma, “Formal analysis of smart contract based
on colored petri nets,” IEEE Intell. Syst., vol. 35, no. 3, pp. 19-30, 2020.
T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541-580, 1989.

P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, and H. A.
Reijers, “Imperative versus declarative process modeling languages: An
empirical investigation,” in Business Process Management Workshops -
BPM 2011 International Workshops, Clermont-Ferrand, France, August
29, 2011, vol. 99, 2011, pp. 383-394.

OMG, “Business process model and notation (bpmn) 2.0,” http://www.
omg.org/spec/BPMN/2.0/, 2011.

R. R. Mukkamala, “A formal model for declarative workflows dynamic
condition response graphs,” Ph.D. dissertation, 06 2012.

1. Garfatta, K. Klai, M. Graiet, and W. Gaaloul, “Blockchain-based
business processes: A solidity-to-cpn formal verification approach,”
in Service-Oriented Computing - ICSOC 2020 Workshops - Dubai,
United Arab Emirates, December 14-17, 2020, Proceedings, vol. 12632.
Springer, 2020, pp. 47-53.

C. Dechsupa, W. Vatanawood, and A. Thongtak, “Transformation of
the BPMN design model into a colored petri net using the partitioning
approach,” IEEE Access, vol. 6, pp. 38421-38 436, 2018.

S. Meghzili, A. Chaoui, M. Strecker, and E. Kerkouche, “An approach
for the transformation and verification of BPMN models to colored petri
nets models,” Int. J. Softw. Innov., vol. 8, no. 1, pp. 17-49, 2020.

W. Dingman, A. Cohen, N. Ferrara, A. Lynch, P. Jasinski, P. E.
Black, and L. Deng, “Defects and vulnerabilities in smart contracts,
a classification using the NIST bugs framework,” IJNDC, vol. 7, no. 3,
pp. 121-132, 2019.

I. Garfatta, N. E. Souid, and K. Klai, “Towards formal verification
of node red-based iot applications,” in Verification and Evaluation of
Computer and Communication Systems - 16th International Conference,
VECoS 2023, Marrakech, Morocco, October 18-20, 2023, Proceedings,
vol. 14368. Springer, 2023, pp. 90-104.

https://en.bitcoin.it/wiki/Value_overflow_incident
https://en.bitcoin.it/wiki/Value_overflow_incident
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.springworks.in/blog/parity-multi-sig-wallets-funds-frozen-explained/
https://www.springworks.in/blog/parity-multi-sig-wallets-funds-frozen-explained/
https://docs.soliditylang.org/en/latest/
https://soliditycpn.lipn.univ-paris13.fr/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/

	Introduction
	Related Work
	Preliminaries
	On Coloured Petri Nets
	On Business Process Modeling Representations
	On Linear Temporal Logic

	Solidity-To-CPN Transformation
	Context Transformation
	Completely Free Behavioural Context
	Constrained Behavioural Context
	CPN4DCR - Initial Model

	Formalizing Vulnerabilities
	Expressing Vulnerabilities in LTL
	Integer Overflow/Underflow
	Reentrancy

	Perspectives
	Conclusion
	References

