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ABSTRACT

Despite the benefits that the Blockchain technology brings to many
application fields, its adoption does not come without challenges.
Smart contracts, which are at the core of ond generation blockchains,
can often be riddled with vulnerabilities that can be exploited to
attack the platform and threaten its security. It is therefore crucial
for the protection of the designed systems to prove the correct-
ness of the smart contracts to be deployed. Approaches have been
proposed to detect generic vulnerabilities like reentrancy, but the
results would often include false positives where the detected bug is
either non existent or not exploitable. Besides, such approaches do
not offer to check contract-specific properties. The work presented
in this paper is situated as part of a formal approach that we have
proposed in an attempt to bridge this gap. This previously outlined
approach is based on the transformation of Solidity smart contracts
into Coloured Petri nets, which provides the possibility to verify
smart contracts with reference to properties expressed as Linear
Temporal Logic (LTL) formulae. Herein we extend our previous
work on mainly two levels: first, by taking into account the concept
of function calls in the transformation and second, by focusing on
the LTL properties that can define the correctness of a smart con-
tract. Such properties can be specific to the control- or data-flow of
the contracts being checked. They can also be used to express vul-
nerabilities as we showcase by proposing LTL formalizations for six
vulnerabilities from the literature. We then leverage the capability
of the Helena model checker to detect these vulnerabilities while
discerning their exploitability, as well as check temporal-based
contract-specific properties.
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1 INTRODUCTION

First known as the supporting technology of the renowned Bit-
coin cryptocurrency, the Blockchain has ever since known many
advances that took it from being merely a database recording trans-
actions between parties to being a computational platform on which
smart contracts can be invoked as transactions. This leap signif-
icantly expands the power of blockchain systems, and increases
their reach to many application fields. This can be particularly ob-
served in the growing interest blockchains are gaining as part of
IT systems, in domains such as health records, banking, voting,
personal identity, etc [26].

While blockchain technology itself has proved to be highly-
tamper resistant, many attacks with significant consequences have
been waged on several blockchain platforms, exploiting hidden
vulnerabilities in deployed smart contracts and exposing the de-
fectiveness of the targeted applications. In 2010, 92 billion BTC
were generated out of thin air by exploiting an integer vulnerability
on the Bitcoin blockchain. One of the most infamous attacks on
Ethereum was the one exploiting a reentrancy vulnerability in the
DAQO and resulting in 3.6M of stolen Ether. A vulnerable blockchain-
based application does not have to be the target of a malicious attack
to malfunction. For instance, the Parity multisig wallet was subject
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to an unintentional accident caused by a self-destruct vulnerability
in 2017 and resulting in freezing 500K of Ether.

Given the importance of the assets circulating in each blockchain,
securing the applications deployed on such distributed ledgers is
considered mission-critical, and seeing that most of the vulnerabili-
ties allowing the breaches are rooted in the smart contracts of the
applications, their verification before deployment is crucial.

Informal as well as formal methods have been proposed to en-
hance the security of smart contracts and ensure their correctness.
While informal techniques can test a smart contract under certain
scenarios, they cannot be relied on to verify specific properties
defining its correctness (e.g., absence of integer overflow vulnera-
bilities, deadlock-freedom) which is where formal techniques prove
to be efficient. We note that we are interested in Ethereum as it is
currently the second largest cryptocurrency platform after Bitcoin
besides being the inaugurator of smart contracts, and more particu-
larly in Solidity [1], the most popular language used by Ethereum.
We also note that while Ethereum allows smart contracts to be
written in a “Turing complete’ language that facilitates semantically
richer applications than Bitcoin which allows very simple forms
of smart contracts, the former also enlarges the threat surface, as
evidenced by the many high-profile attacks.

In this paper, we build on our proposed approach based on
Coloured Petri Nets (CPNs) [14], for the formal verification of So-
lidity contracts. Our choice of this formalism is driven by its ability
to combine the analysis power of Petri nets with the expressive
power of programming languages, which makes it suitable for the
modeling and verification of large and complex systems. CPNs have
in fact been leveraged in various contexts in literature [10, 23] prov-
ing their efficiency for formal verification. The cornerstone of our
approach was first set in [11] where we presented a rough outline of
the verification method that we propose and a preliminary experi-
mentation using two different model checkers. In [12], we provided
more details on the patterns we propose for the transformation of
a Solidity smart contract into a hierarchical CPN model depicting
the functionality of the former. In this present paper, we propose
improvements on two levels:

(1) first we refine our proposed transformation by taking into
account the concept of function calls. Having initially con-
sidered the basic concepts of Solidity in [12] that allow the
verification of a single smart contract whose functions are
invoked by external users, we now focus on supporting the
verification of functions that can also be invoked by other
functions (either from the same contract or other contracts),
the main implication of which being the added support for
the verification of multiple interacting smart contracts;
and second, we propose a formalization of a set of vulnera-
bilities as LTL formulae. The correctness of the represented
contracts is then proven by analyzing the generated CPN
model and verifying it w.r.t temporal properties that can be ei-
ther predefined for vulnerabilities or other contract-specific
properties relevant to the contract’s data- and control-flows,
which gives the designer a wide range of control to define
the correctness of the contract.

@)
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We propose an algorithm that automates our transformation, imple-
ment a prototype to prove its feasibility and leverage the Helena [8]
tool to verify system properties.

The remainder of this paper is organized as follows: Section 2
provides essential prerequisites on CPN and LTL. Section 3 presents
the related works. In Section 4, we present use cases to introduce the
considered vulnerabilities. We revisit our transformation approach
in Section 5 to include function calls and dedicate Section 6 for the
formalization of a selection of vulnerabilities using LTL as well
as providing details on the application of the whole verification
approach. Section 7 concludes the paper and outlines some future
perspectives.

2 BACKGROUND

2.1 Coloured Petri Nets

A Petri net (PN) [22] is a formal model with mathematics-based
execution semantics. It is a directed bipartite graph with two types
of nodes: places (drawn as circles) and transitions (drawn as rect-
angles). Despite its efficiency in modelling and analysing systems,
a basic PN falls short when the system is too complex, especially
when data representation is required. To overcome such limitations,
extensions to basic PN were proposed, equipping the tokens with
colours or types [13], [28] and hence allowing them to hold values.
A large PN model can therefore be represented in a much more
compact and manageable manner using a Coloured Petri net.

A Coloured Petri Net [14] combines the capabilities of Petri nets,
from which its graphical notation is derived, with those of CPN ML,
a functional programming language based on Standard ML [21],
to define data types. The formal definition of a CPN is given in
Definition 2.1 and the main concepts needed to define its dynamics
are given in Definition 2.2.

Definition 2.1 (Coloured Petri net [14]). A Coloured Petri Net is a
nine-tuple CPN = (P, T, A, 2, V,C,G,E,I), where:

(1) P is a finite set of places.

(2) T is a finite set of transitions such that PNT = Q.

(3) AC (PXT)U(T xP) is a set of directed arcs.

(4) X is a finite set of non-empty colour sets.

(5) V is a finite set of typed variables such that Type[v] € 2 for
all variablesv € V.

(6) C: P — X is a colour set function that assigns a colour set to
each place.

(7) G : T — EXPRy, where EXPRy is the set of expressions pro-

vided by CPN ML with variables in V, is a guard function that

assigns a guard to each transition ¢ such that Type[G(t)] =

Bool.

E : A — EXPRYy is an arc expression function that assigns an

arc expression to each arc a such that Type[E(a)] = C(p)ms,

where p is the place connected to the arc a (i.e., the type of

the arc expression is a multiset type over the colour set of

the connected place).

I: P — EXPRy is an initialisation function that assigns an

initialisation expression to each place p s.t. Type[I(p)] =

C(p)ms-

Definition 2.2 (CPN concepts [14]). ForaCPN = (P,T,A, %, V,C,G,
E,I), we define the following concepts:
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(1) ep and pe respectively denote the sets of input and output
transitions of a place p.

(2) ot and te respectively denote the sets of input and output
places of a transition t.

(3) A marking is a function M that maps each place p € P into
a multiset of tokens M(p) € C(p)ums-

(4) The initial marking My is defined by My (p) = I(p){) for all
pEP

(5) The variables of a transition t are denoted by Var(t) C V
and consist of the free variables appearing in its guard and
in the arc expressions of its connected arcs.

(6) A binding of a transition ¢ is a function b that maps each
variable v € Var(t) into a value b(v) € Type[ov]. It is written
as (vary = valy, ..., vary = valy). The set of all bindings for a
transition t is denoted B(t).

(7) A binding element is a pair (t,b) such thatt € T and b € B(t).
The set of all binding elements BE(t) for a transition ¢ is
defined by BE(¢t) = {(t,b)|b € B(t)}. The set of all binding
elements in a CPN is denoted BE.

(8) A step Y € BEs is a non-empty, finite multiset of binding
elements.

A transition is said to be enabled if a binding of the variables
appearing in the surrounding arc inscriptions exists such that the
inscription on each input arc evaluates to a multiset of token colours
that is present on the corresponding input place. Firing a transition
consists in removing (resp. adding), from each input place (resp. to
each output place), the multiset of tokens corresponding to the input
(resp. output) arc inscription. For more details on the CPN formalism
and the formal definition of its semantics, we refer readers to [14].

CPN example. To better explain the basic concepts of CPN, we use
the simple CPN model of Fig. 1. Couple_Type is defined as the
product of two integers and Triplet_Type as the product of three
integers. x and y are two integer variables. In a CPN model, each
place has a colour that determines the kind of data it can contain.
We say that p1 is of colour (or type) Couple_Type and p2 is of
colour Triplet_Type. Initially, the place p1 contains three tokens
with different values (three different couples). The expressions on
the arcs have to correspond to the colours of their respective places
(e.g., the expression on the outgoing arc of p1 has to conform to
its colour Couple_Type). In this CPN, (x, y) can be bound to any of
the tokens in p1. For example, if it is bound to the first token (2, 5),
the firing of transition 1 results in removing that token from p1
and adding a token with the value (2,5,7) to p2.

1°(2,5) ++
1°(4,7) ++

1(3,2)
(3@ (x,y) E (x.y,x+y)

Couple_Type Triplet_Type

Figure 1: A simple example of CPN
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2.2 Linear Temporal Logic

The approach presented in this paper is primarily based on model
checking of CPN models w.r.t formulae expressed in Linear Tempo-
ral Logic (LTL). This logic was first introduced in [24] as a means
to reason about concurrent programs.

In LTL, a classical timeline that starts “now” is considered, where
every moment has a unique possible future. In other words, a model
of LTL is an infinite sequence of indexed states (i = 0, 1, 2, ...) where
each point in time has a unique successor. An LTL formula is eval-
uated over such a sequence of states starting from an i’th state. It
contains a finite set Prop of atomic propositions, the usual Boolean
operators -, A, V, and —, in addition to temporal operators:

o Until (U): ¢ U ¢ is true if ¢ is true now or ¢ is true now
and remains so until ¢ holds.

e Next (X or O): X ¢ is true if ¢ is true in the next step.

e Globally (G or O): Gg is true if ¢ is true in every step.

e Future (¥ or ©): ¥ ¢ is true if ¢ is true now or in some
future time step.

Definition 2.3 (LTL formula). An LTL formula can be inductively
defined as follows:

e Vp € Prop, p is an LTL formula.
e If ¢ and ¢ are two LTL formulae, then = ¢, ¢ A Y, ¢ V ¢,
o=y, oUY, X ¢, G ¢ and F ¢ are LTL formulae too.

The technique of model checking checks that a system, starting at
a start state, satisfies a specification [25].

3 RELATED WORKS

There are two primary lines in existing studies on formal verifica-
tion of smart contracts [9]. Theorem proving is the basis for the first
group of works [2, 5]. The fundamental concept is to convert the
contract’s code (typically its associated EVM bytecode) into a theo-
rem prover-processable code and then use the latter to discharge
proofs on the produced code’s correctness. The verification is not
automatic in this situation, and the user’s competence is required
to manage the prover and manually discharge proofs.

Model checking is used in the second category of research stud-
ies. The majority of these studies make use of symbolic model
checking in combination with other techniques like symbolic exe-
cution [16] and abstraction [3]. Oyente [19], a tool that targets four
vulnerabilities: transaction order dependence, timestamp depen-
dence, mishandled exceptions, and reentrancy, is the first attempt
in this category. It works at the contract’s EVM bytecode level,
generating symbolic execution traces and analyzing them for the
satisfaction of particular requirements on the paths, indicating the
presence of vulnerabilities. Multiple tools followed the lead of this
work, either by exploiting some of its components in their imple-
mentations, such as GASPER [6], which reuses Oyente’s generated
control flow graph for the detection of bytecode patterns with high
gas costs, or by extending it like in the case of Osiris [27], with the
goal of supporting the detection of other vulnerabilities.

Zeus [15], which works on the source code of the smart contract,
also uses symbolic model checking. The user must provide the
criteria to be verified as a CHC-based policy written in XACML,
according to which the code is instrumented before being translated
into a low-level intermediate representation (LLVM bitcode), which
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is then given to a verification engine.

VeriSolid [20] is an FSM-based method that, unlike the others, fo-
cuses on creating a correct-by-design contract rather than detecting
bugs. The authors suggest to transform an FSM-based contract into
Solidity code and allow the user to define expected behavior in the
form of liveness, deadlock freedom, and safety properties that may
be represented using templates for CTL properties and validated
by a backend symbolic model checker.

Recently, attempts have been made to employ colored petri nets for
smart contract verification. [18] presents an example of behavioural
properties verification using a CPN model for a crowdfunding smart
contract. It does not, however, provide a comprehensive and generic
technique that can be used to any smart contract, since the work
only presents a case study of a manual translation from the use
case’s contract to the CPN model without specifying general trans-
formation rules. [7] proposed another CPN-based solution. The
authors start with the bytecode and apply Hoare’s logic to build
a CPN model, which is subsequently used for the contract’s secu-
rity analysis. Although, it is based on CPN, this technique cannot
be used to verify data-flow properties since the produced model
emphasizes on the workflow retrieved from the contract’s CFG.

The techniques based on symbolic execution (e.g., [6, 19, 27])
often employ under-approximation (e.g., in the form of loop limits)
in order to create the traces that would be used for the verification,
which implies that important violations might be ignored. This
explains why their reported findings contain false negatives and/or
positives. We also highlight the fact that the majority of existing
research focuses on particular smart contract vulnerabilities, with
just a few studies allowing for the expression of customisable fea-
tures, which are often related to control flow-related aspects. None
of these studies, in fact, focus on data-related properties. It’s worth
noting that, due to Solidity’s lack of formal semantics, the majority
of the presented techniques work with the EVM bytecode rather
than the Solidity code. However, this often leads to loss of contex-
tual information, therefore limiting the range of characteristics that
may be checked as a result.

Our suggested solution seeks to address these issues by allowing
developers to create behavioural and contract-specific properties (in
the form of temporal formulae) that can be based on the contract’s
data flow and hence are not limited to a small number of known
vulnerabilities. We note that in our work, the six vulnerabilities
that we consider in Section 6.1 are given as mere examples to prove
that the expressiveness of LTL formulae can cover vulnerabilities
from the literature even though our focus is on the verification of
contract-specific properties. Furthermore, we point out that our
method uses an explicit model checking strategy and that our trans-
formation process works on source code rather than bytecode. As a
result, we avoid the repercussions of under-approximation as well
as loss of contextual information.

4 VULNERABILITIES THROUGH USE CASES

A Solidity smart contract may look like a JavaScript or C program
syntax-wise, but they are actually dissimilar since the underlying
semantics of Solidity is different from traditional programs. This
naturally calls on more vigilance from programmers who might be
faced by unconventional security issues as vulnerabilities in smart
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contracts seem to often stem from this gap between the semantics
of Solidity and the intentions of the programmer [4].

In the following we present two use cases to explain the vulner-
abilities treated in this work to provide a better understanding of
how we verify them later. The full Solidity files can be found in our
repository!.

One of the most widespread smart contract applications is de-
livering gambling services. Thanks to Blockchain’s decentralized
nature and the transparency of its transactions, players can have a
clear view of the behaviour of the game and are therefore led and
incentivized to put their trust in the system which is determined
by the rules implemented by its contracts. Our first Solidity exam-
ple (Listing 1) is based on a published contract? implementing a
lottery game. It has been tweaked to illustrate more vulnerabilities
without altering its purpose. A player participates in this game
by sending an amount of ether equal to the TICKET _AMOUNT
through playTicket(), which is then added to the game’s pot. The
winner is determined based on a random value calculated using
the block’s timestamp and the LottoLog is updated accordingly to
keep track of the winners. The winner then gets paid by calling
getPot() and the game’s host (bank) can start a new round of lotto
using RestartLotto(). This contract may seem fair to inexperienced
Solidity developers, but it actually presents multiple vulnerabilities
as we will later explain.
contract EtherLotto {

address public bank;
struct GameRecord {address winner;
uint8 gameNum;
GameRecord[] LottolLog;...
function EtherLotto() {...}
function RestartLotto() {...}
function playTicket() payable {
require(msg.value == TICKET_AMOUNT);...
uint random = uint(sha3(block.timestamp)) % 2;
if (random == 0) {
GameRecord gr;...

uint amount;}

33
function getPot() {
require(won == true);
if(msg.sender == LottoLog[gameNum].winner){
msg.sender.call.value(LottoLog[gameNum].

amount) ("");
pot = 0;3}}}

Listing 1: Solidity example: EtherLotto.sol

We consider a second example® (Listing 2) to emphasize on
the harmful effect the self-destruction vulnerability can have on a
contract. It implements another gambling game whereby a player
sends 1 ether to the contract by calling play() in hopes to be the one
to hit a milestone. Once the game is over (i.e., the finalMileStone is
reached) winners claim their rewards through claimReward().
contract

uint
uint
uint

EtherMilestone {

public payoutMileStonel = 6 ether;...
public finalMileStone = 20 ether;
public finalReward = 10 ether;
mapping (address => uint) redeemableEther;
function play() public payable {
require(msg.value == 1 ether);

Uhttps://depot.lipn.univ-paris13.fr/garfatta/sol2cpn
Zhttps://etherscan.io/address/0xalle4ed59dc94e696123111942626ed513cb172
Shttps://gist.github.com/vasa-develop/415a17¢709d804a4d351485cd1b7¢981
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https://etherscan.io/address/0xa11e4ed59dc94e69612f3111942626ed513cb172
https://gist.github.com/vasa-develop/415a17c709d804a4d351485cd1b7c981
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uint currentBalance = this.balance + msg.value;

require(currentBalance <= finalMileStone);

if (currentBalance == payoutMileStonel)

else if ...

else if (currentBalance finalMileStone )
redeemableEther[msg.sender] += finalReward;

return;}

function claimReward() public {

require(this.balance finalMileStone);

require(redeemableEther[msg.sender] > 0);

redeemableEther[msg.sender] = 0;

msg.sender.call.value(redeemableEther[msg.sender
D53

Listing 2: Solidity example: EtherMilestone.sol

contract MaliciousContract {
uint ticket;
EtherLotto el = EtherLotto(@xbfe@61dc...);
EtherMilestone em = EtherMilestone (@xc50@164dfa...);
function playlLotto() {
ticket = msg.value;
el.playTicket.value(ticket)();
el.getPot();}
function playMilestone() { em.play.value(1)();}
function getRevenge ( ) { selfdestruct(em);}
function () payable { el.getPot();3}}

Listing 3: A malicious smart contract in Solidity

Integer Overflow/Underflow: due to Solidity’s lack of safeguards
on mathematical operators, errors such as overflows and underflows
may occur as a result of violation of value limitations of integers.
The uint8 gameNum variable in the EtherLotto contract can be the
source of such a vulnerability when the game exceeds 256 rounds.
In fact, at the 257" round, and due to Solidity’s wrapping in two’s
complement representation for integers, gameNum will be set to 0,
causing data errors/overwriting into the critical LottoLog variable.

Reentrancy: the main idea behind it is that a function can be inter-
rupted in the middle of its execution and then be safely called again
before its initial call completes. Once the second call completes, the
initial one resumes correct execution. The simplest example is when
a smart contract uses a variable to keep track of balances and offers
a withdraw function. A vulnerable contract would make a transfer
of funds prior to updating the corresponding balance which an
attacker can take advantage of by recursively calling this function
and eventually draining the contract. This can be illustrated by a
call to the function playLotto() with a value of 10 in the Malicious-
Contract (Listing 3) which would start by playing a ticket in the
EtherLotto contract by invoking its playTicket() function and then
attempting its getPot() function. In the instance where attacker’s
ticket is a winning one and the contract holds more than twice the
amount of the pot in that round, a reentrancy attack can happen. In
fact, by sending the jackpot to the winner (Listing 1), the EtherLotto
contract invokes the fallback function of the MaliciousContract,
which is an unnamed function used to receive data or Ether. This is
where the control flow is handed over to the latter contract whose
fallback function recursively calls getPot(), which is allowed since
the conditions are still valid, until the EtherLotto contract’s balance
is less than the current pot’s amount.

Self-Destruction: the selfdestruct(address) function, when imple-
mented in a contract, removes all bytecode from the contract’s ad-
dress to render it inaccessible and sends all its ether to the specified
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address. The latter can be another contract’s address, in which case,
the ether transfer happens forcibly, regardless of the recipient’s
code (i.e., without invoking its fallback function). Getting back to
our second example EtherMilestone, we note the use of this.balance
in play() and claimReward(). A player who missed a milestone, could
vengefully send ether using selfdestruct() (e.g., function getRevenge()
in MaliciousContract) as to push the contract’s balance above the
finalMileStone, locking all of the contract’s ether and denying the
winners who had already reached some milestones their rewards
since claimReward() would revert.

Timestamp dependence: since the execution on a Blockchain
needs to be deterministic for all the miners to get the same re-
sults and reach a consensus, users usually resort to block-related
variables such as timestamp as a source of entropy. Sharing the
same view on the Blockchain, miners would generate the same re-
sult, albeit being unpredictable. Even though this seems to be safe,
it gives the miners a small room for manipulation given that they
can choose a timestamp within a certain range for the new block,
which gives them the possibility to tamper with the results and put
some bias towards a certain user for example. Such a vulnerabil-
ity can be exploited by any contract relying on a time constraint
to determine its course of action. In our EtherLotto example, the
function playTicket() is timestamp-dependent.

Skip Empty Literal: the source of this vulnerability is the way the
encoder of the Solidity compiler treats the arguments in a function
call. In fact, when a function call’s argument is an empty string
literal, it affects the following arguments which are shifted to the
right by 32 bytes. This results in a function call with corrupted data.

Uninitialized Storage Variable: Solidity stores state variables se-
quentially. So in EtherLotto, the variable bank is stored in slot 0.
Since Solidity uses storage for complex data types like structs by
default when declared as local variables, they become pointers to
storage. Because gr is uninitialized (Listing 1), it would actually
point to the same slot as bank. When setting gr.winner to the first
winner’s address, this is effectively changing the address stored in
bank to the winner’s, which results in an unexpected behaviour
by this contract. In our example, we present this vulnerability as
an error unintentionally introduced by the contract’s owner and
unintentionally exploited by the first winner. It can, however, be
intentionally injected in a contract’s code or intentionally exploited
by a user, as is the case in the OpenAddressLottery* honeypot.

5 ASOLIDITY-TO-CPN FORMAL
VERIFICATION

Our verification approach comprises mainly two steps [11, 12]:

(1) transforming the smart contract’s Solidity code into a CPN
model

(2) model checking of the generated CPN model with regard to
an LTL property that can express: (i) a vulnerability in the
code or (ii) a contract-specific property

The first step consists in generating a CPN submodel for each func-
tion of the contract to be verified (see Figure 2). These submodels
(that we call level-0 submodels) represent the internal workflows
of the functions and serve as building blocks for the final HCPN

*https://etherscan.io/address/0x741f1923974464efd0aa70e77800ba5d9ed 18902
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Figure 2: Overview of the approach

model. Then, depending on the property considered for verification,
the function targeted in the verification and whether knowledge
of the interacting contracts is provided, the actual CPN model that
will be passed to the model checker is built by (1) considering the
submodel of the function to be checked as the level-1 of the HCPN,
(2) linking it to the places representing the state of the blockchain
and (3) building a hierarchy (i.e. additional levels) by explicitly rep-
resenting function calls in this submodel (if the checked property
requires it).

5.1 A CPN Modelling Approach for Solidity
Smart Contracts

In our approach, we opt for a hierarchical CPN model to repre-
sent a smart contract. As shown in Figure 2, we represent each
function of the smart contract by an aggregated transition that en-
capsulates a submodel corresponding to the body of the former. In
the first step, these functions are represented disjointedly. In fact,
our aim at this pre-verification stage is to get building blocks for
the smart contract’s model that will be fed to the model checker.
In the second step, the obtained submodels are contextualized by
specifying the input for the function to be verified (places S and P
which respectively represent the state of the contract and the call
arguments of the function) and potentially linking its submodel
to other functions’ submodels in case of the presence of function
calls. In fact, function calls are initially abstracted and therefore
represented by aggregated transitions in the model (e.g., tfilsil jn
Figure 2) under the assumption that they do not present structural
problems (deadlock-free and loop-free) which can be separately
verified for each function. Depending on the property to be verified,
an aggregated transition may need to be unfolded if it is involved
in the property, hence the multi-level hierarchy in the model (e.g.,
tf7lstl in Mfilsi] is hidden and replaced by its submodel M/J [sily,
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It is kept folded otherwise (e.g., tfklsil in pfRIstly This abstraction
leads to a reduction in the size of the state space the model checker
needs to search. We note that this is a generic structure that could
be enriched by a more specific control flow if the user provides a
source from which a behaviour could be extracted (e.g., the code of
an interacting smart contract, a business model defining the work-
flow in which the contract is used). In the following, we further
detail the elements of our proposed model in order to provide a
better understanding of the Algorithms 1, 2 and 3.

5.2 Elements of our CPN Model for Solidity

Transitions T
(1) TA: aggregated transitions used for the representation of
functions, as well as for the modular representation of func-
tion calls. They can be substituted by submodels.
(2) TR regular CPN transitions. They are unsubstitutable.

For a transition t € T we note:

t.name, the name of the transition ¢

e t.st, the Solidity code associated to ¢

o t.metaColour, the metaColour of the control flow places of
t(if t € TA)

e t.data, the set of data places associated to t (if t € T4)

e t.sub, the CPN submodel associated to transition ¢ (if ¢t €

TA), with t.sub.inTransitions designating its input (source)

transitions and t.sub.outTransitions designating its output

(sink) transitions

t.guard, the guard of the transition ¢

ot[cf] € Pcr U Ps, input control flow place of ¢

ot[input] € Pp, input parameters place of ¢

ot[data] C P44, input data places of ¢

t o [cf] € Pcr U Ps, output control flow place of ¢

t o [output] € PR, output return place of ¢
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e t e [data] C P44, output data places of ¢
Places P

o C-flow places Pcr, Data places P44, Parameter places Pp,
Return places Pg

e a state place ps € Ps
e a parameters place p, € Pp
Expressions E An expression is a construct that can be made
up of literals, variables, function calls and operators, according to
the syntax of Solidity, that evaluates to a single value. For ease of
representation later, we define three types of expressions:

e expressions with variables Ey: are expressions that make
use of at least one local variable. In such an expression ey,
the set of variables used is accessible via e,.vars.

o expressions with function calls Er: are expressions that make
use of at least one function call. In an expression ey, the set
of function calls used is accessible via e,.fctCalls

o explicit expressions Ef: are expressions that do not make
use of any variables nor function calls.

We note that an expression e can of course have both variables and
function calls (e € Ey A e € EF).
Statements S

e compound statement {st[1]; st[2]; ...; st[N]} (where Vi €
[1..N], st[i] € S)

e a simple statement (str s, strys) (wWhere stygs € E and
strys € E)

- afunction call statement, where: st; gs = 0 and stgys.vars
designates the set of variables used in the arguments of
the call (if strygs € Ey)

- an assignment statement, where: sty 75 € Ey and sty gs.vars

contains one variable that designates the assigned one
strys.vars designates the set of variables used in the as-
signment expression (if stgys € Ey) and stgrys.fctCalls
designates the set of function calls (if strys € EF)

e a control statement®

5.3 Transformation Algorithm

The end goal of our transformation is to generate a multi-level
hierarchical CPN model that represents the execution of a function
of the Solidity smart contract with regard to a property to be verified.
First, we generate the aggregated transitions for the smart contract’s
functions, and build their submodels.

In fact, we see a smart contract function as a set of statements.
A statement can be either a compound, a simple or a control one. A
simple statement can be a function call, an assignment, a variable
declaration, a sending or a returning statement. A control state-
ment can be a requirement, a selection or a loop (a for or a while
loop). To each one of these statement types we define a correspond-
ing pattern in CPN, according to which a snippet of a CPN model
is generated [12]. The resulting snippets are linked according to
the function’s internal workflow. For example, Figure 3 represents
the resulting submodel obtained by applying our transformation
algorithm (Algorithm 1) on the function play() of the EtherMile-
stone contract. The BUILDCOMPOUNDSTATEMENT is first called on
the body of the function, creating the places P1 to P4 and then

5See footnote 1 for the full list of elements.

322

SAC 22, April 25-29, 2022, Virtual Event,

Algorithm 1: cREATESUBMODEL(Y; st; Pin; Pout)

Input :t, statement st, cf input place p;y, cf output place
Pout
Output: submodel of transition ¢
1 switch st do
2 case compound st {st[1];st[2];...;st[N]}do

3 BUILDCOMPOUNDSTATEMENT
4 (t:st:pin;pout)

5 end case

6 case simple st do

7 switch st do

8 case ... do

9 |
10 end case

case function call st do
BUILDFUNCTIONCALLSTATEMENT
(t:st:piniPout)

end case

11
12

13

14

15 end switch

16 end case

17 end switch

recursively calling cREATESUBMODEL on each of the 5 statements it
comprises. The algorithm corresponding to the statement’s type is
invoked each time, adding the necessary places and transitions in
conformance to the defined patterns.

We only include the algorithm responsible for the generation of
the CPN pattern for a function call®.

Algorithm 2: BUILDFUNCTIONCALLSTATEMENT(t; St; pin;
Pout)
Input

:transition ¢, a function call statement
st = (strgs, strys), control flow input place pip,
control flow output place poyr

Output: submodel for statement st

create transition

create place pparam ’

create arc from pjp, to tf

[

)

©w

'S

create arc from Pparam; to tf
CONNECTLOCALVARS( fRHS.Uars;t;tf )
CONNECTFUNCALLS(frys.fctCalls;t)

«

o

create arc from ¢t/ to pour With a placeholder inscription

N}

As stated before, the second step of our modelling approach
consists in contextualizing the function to be verified. To do so,
two places are created to represent the state of the smart contract
and the call arguments for the function in question and are linked
to its respective submodel which represents the first level in our
hierarchical CPN. Aggregated transitions within this submodel are
unfolded (and aggregated transitions within these unfolded tran-
sitions, recursively) depending on the property to be verified (see

%See footnote 1 for the rest of the algorithms with detailed explanations (in the Solid-
ity2CPN document).
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Figure 3: CPN submodel of play() function in EtherMilestone

Algorithm 3: UNFOLDTRANSITION(t?;pin;Pout)

Input :aggregated transition t%, pin, pout
Output: submodel replacement of t¢
1 for t’ € t%.sub.inTransition do

2 replicate (arc from pip, to t%) to ¢/
3 replicate (arc from et[input] to %) to ¢/
4 for p € ot%[data] U et*[output] do
5 ‘ replicate (arc from p to %) to ¢/
6 end for
7 end for
s for t’ € t% sub.outTransition do
9 replicate (arc from % to poyy) to t” with the placeholder
inscription replaced by values from et [cf]
10 end for

11 hide transition t% and all arcs linked to it

algorithm UNFOLDTRANSITION) which builds the final hierarchical
CPN to be checked.

6 FORMAL VERIFICATION OF SMART
CONTRACTS

As explained in Section 5, we adopt a two-phase verification ap-
proach, in which we rely on Helena to verify LTL properties that
express the susceptibility of contracts to vulnerabilities. To this aim,
we start by expressing each targeted vulnerability in LTL.

6.1 Expressing Vulnerabilities in LTL

In the following, M{i designates the CPN submodel corresponding
to function f in smart contract s;. We note that sometimes we use
parameterized propositions to indicate that they are applied to an
unspecified aggregated transition. Concretely, such propositions
need to be explicitly defined for each transition to be verified”.

"Not to be confused with first order predicates
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6.1.1 Integer Overflow/Underflow. In our CPN model, we define
correspondences between the types used in the Solidity language
and those offered by helena so that they cover the same ranges. The
model checker is therefore able to detect when the smart contract
contains an out-of-range expression. It does not, however, pinpoint
the source of the anomaly, so the user does not have much infor-
mation to go on to track it and try to correct it. To overcome this
deficiency, we propose to model integer overflows/underflows as a
safety LTL property that can be verified on a specific variable x:

IUOyx = O0-xIsOutOfRange

Where xIsOutOfRange is a proposition that evaluates to true if
the value of x is not included in the range of its type which we
delimit by defining lower and higher thresholds (minThreshold and
maxThreshold respectively).

xIsOutO fRange =(x < minThreshold)
V (x > maxThreshold)

6.1.2  Reentrancy. This vulnerability is related to functions that
contain instructions responsible for Ether transfer, and therefore is
applied w.r.t a function containing a sending statement. Given such
a function, we propose two LTL properties. The first is a safety
property defined as follows:

ReentrancyM{i = DﬂreentrantMsfi

Where reentrant, s is true if the necessary condition under

which a reentrancy vulnerability can be detected in the function f
in the smart contract s; is valid. This condition can only be defined
when the user indicates the variable x serving as a record for bal-
ances and whose assignment should be watched. Such a condition
expresses the presence of a sending statement which is not preceded
by an assignment to x:
reentrant, ; = (=X Assignment)U Sending
Si

Where XAssignment is true when a statement is an assignment to
the variable x and Sending is true when a statement is a sending one.
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A vulnerability is detected when Reentrancy(tsfi ) evaluates to false.
This property is used when we only have the code of the smart
contract to be verified (i.e., a totally free behaviour). If the code of
the interacting contract s; is available, we propose the following
LTL property:
ReentrancyM£ =SendingTos; — OO((=SendingTos;)
U endOfFallbacks;)

Using this property we can verify that once the sending state-
ment is executed (SendingTos; is true), it cannot be executed again
until the fallback function of the receiving contract has finished
(endOfFallbacks; is true) i.e., no reentrancy breach can happen.

6.1.3  Self-destruction. It is checked by detecting the presence of a
test containing this.balance in the code of the function:

M

selfDestructionM£ = —~testOnBalance I
1 1

This detection process can be further enhanced when the code of the
interacting smart contract is available. In that case, given a function
g in s; that contains a self destruction instruction directing Ether to
si, a function f in s; is considered safe against this vulnerability if
it does not contain a test on this.balance or if g cannot be executed
prior to f under inspection, which is expressed by the LTL property:

selfDestruction (ﬂtestOnBalancer)

ML=
v (ﬁselfDestructMsgj‘ll starthi)

We note that even though these properties can detect the presence
of the self destruction vulnerability, more information on what the
function exactly does needs to be provided in order to be able to
assess its harmfulness on the execution. This can still be checked
by evaluating a contract-specific property.

6.1.4 Timestamp Dependence. In order to check for this vulner-
ability, we propose an LTL property to detect the accessibility of
block.timestamp or its alias now:

TSDMf = O-TimestampDependantStatement

Where TimestampDependantStatement is true if a timestamp is used
in a statement. Similarly to the self destruction vulnerability, the
presence of timestamp dependence can be detected using the pro-
posed property, but to check the harm it may incur a more appro-
priate contract-specific property needs to be evaluated.

6.1.5 Skip Empty String Literal. This can be checked for a func-
tion f containing function calls by verifying that for any function
call with n arguments {aj, .., an} no empty string is passed as an
argument (except for the last one a,). We express this as follows:

SkipEmptny = O-FunctionCall
Where FunctionCall is true when the statement is a function call
with an empty argument a; (i # n).

6.1.6  Uninitialized Storage Variable. This is verified for a function
f where a variable x of a complex type is defined, by checking the
following property:

UnintializedVariabler = —readXUwriteX
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Where readX is true when x is read in a statement and writeX is
true when it is assigned.

6.2 Model Checking of Smart Contracts

Once we have applied our transformation algorithm to first generate
the submodels of a smart contract’s functions, verifying properties
of the contract would come down to verifying properties on the
corresponding CPN model. For model checking, we chose Helena [8]
which is a High LEvel Nets Analyzer available as a command line
tool. It offers explicit model checking support for an on-the-fly
verification of state and LTL properties over CPN models described
in Helena’s specification language.

Figure 4: Integer overflow/underflow property in Helena

We have generated the CPN models of our use cases for Helena
using our prototype for the transformation algorithm (see Figure 3
for an example of a visual representation of the CPN submodel of
the function play() in EtherMilestone). We have then written the
properties for the vulnerabilities in Section 4 in Helena’s language.
Thus, we were able to detect the described vulnerabilities, as well
as contract-specific properties established for our examples. The
artifacts used in this verification, a detailed report on the results
and the prototype implementation are available in our repository®.

Search report

Action performe
property checking
Host machine
Ikramz (pid = 60511)
Property checked
U0
Termination state
PROPERTY_VIOLATED

Statistics report

24 places
28 transitions
72 arcs

Trace report

The following run invalidates the property.

{
s =<( {0, 0,
P_RestartLott
P_PlayTicket =

|1, false, 0} )=
( {{e, 03}, 0} )>
{{1, 10}, 18, 1} )> + <( {{2, 10}, 10, 2} )> + <( {{3, 1

Figure 5: Model checking result

Figure 4 shows the corresponding property written in Helena
for the IUO LTL property applied on the variable gameNum in
EtherLotto and Figure 5 is a snippet of the result of the model checker
showing the detection of the vulnerability and the indication of a
counter example. The detection process took 35.8s including 1.79s
for source compilation and 34.01s for state space exploration which
had entailed the processing of 13 664 828 states, for a test on a
model with 10 players.

8See footnote 1
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7 CONCLUSION AND FUTURE WORK

Considering the crucial role the blockchain technology plays in
many domain applications especially with its increasingly expand-
ing reach, it is critical for smart contracts to provide certain guaran-
tees in terms of correctness to support a foundation built on trust.
Formal approaches for the verification of Solidity smart contracts
have been proposed, but they are generally designed to target spe-
cific vulnerabilities known in the literature (e.g., reentrancy) which
have been reported to be the root of some attacks or malfunctions.
Checking the absence of such vulnerabilities in a smart contract,
however necessary, does not guarantee its correctness as a faulty
behaviour may stem from a flaw specific to that contract. With
our proposed approach we aim to bring a solution to this problem
by providing a way to formally verify smart contracts by not only
checking for vulnerabilities in the code but also offering the pos-
sibility to express additional contract-specific properties to check.
Our prototype and preliminary tests prove the feasibility of our
approach. A comprehensive evaluation (e.g., by experimenting on
some existing data set of smart contracts like SolidiFI?) still needs
to be carried out. To further improve our verification results and
get better scalability, we intend to work on Helena by embedding it
with an extension to an existing state space reduction technique
previously developed for PNs [17] and adapting it for CPNs.
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