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ABSTRACT
One of the 21

st
century’s hottest topics in the world of IT has been

the emergence of what some predict to be the foundation stone

for a new era of internet (web 3.0): Blockchain technology. Besides

being the backbone of what we come to know as cryptocurren-

cies, Blockchain’s features make for a bottomless list of possible

applications, especially thanks to the concept of smart contracts.

This, however, caused Blockchain to be in the limelight of not only

interested investors but also malicious users who started hunting

for this technology’s vulnerabilities, which resulted in numerous

attacks on different Blockchain platforms. In an attempt to mend

such loopholes, researchers took an interest in the verification of

smart contracts, which are at the heart of Blockchain’s applica-

tions. In this survey, we aim to present a general overview of the

different axes investigated by researchers towards the verification

of smart contracts, while taking a special interest in studies that

focus on formal verification, the different approaches they apply

and vulnerabilities they target.

CCS CONCEPTS
•General and reference→ Surveys and overviews; • Security
and privacy→ Formal methods and theory of security; • Software
and its engineering → Formal methods; Formal software verifica-
tion; Model checking.
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1 INTRODUCTION
Despite the fluctuation in the values of cryptocurrencies, the grow-

ing wave of adoption of blockchain-based distributed ledgers has

not yet known any ebbing ever since its inception led by the well-

known Bitcoin.While the first-generation blockchains were focused

mainly on cryptocurrencies, a new generation emerged later, which

embeds the distributed ledgers by so-called smart contracts that

enable them to function as distributed computing platforms. These

smart contracts are, however, often riddled with vulnerabilities. In

fact, the most prominent Blockchains have been far from immune

to the ill-intentioned attackers especially with the added monetary

lure to the mere feeling of satisfaction they get from hacking. The

first dangerous attack on a blockchain can be traced back to August

2010, when 92 billion BTC were generated out of thin air by ex-

ploiting an integer overflow vulnerability in the Bitcoin blockchain,

which resulted in cancelling all relevant transactions and rolling

back the blockchain to a previous state. The DAO attack in June

2016, caused by a reentrancy vulnerability, is one of the most infa-

mous attacks Ethereum has ever had to suffer. On top of the tangible

loss that evaluated to 3.6M of stolen ether (around 55M USD at the

time) the attack resulted in a hard fork in the Ethereum blockchain

which could have easily resulted in a community fallout, the worst

possible nightmare for Ethereum. The Parity multisig wallet has

been subject to two substantial attacks. The first happened in July

2017 when more than 150K ETH were stolen (32M USD). The at-

tacker used a vulnerability in the code (a bad practice) that allowed

him to change the ownership of an important contract and take

possession of its ether. The second attack which happened in No-

vember 2017, did not result in stolen funds but caused 513K ETH

to be locked in the attacked contracts (160M USD).
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From an academic point of view, numerous methods and tools

have therefore emerged to both support the development of se-

cure smart contracts and aid the analysis of already deployed ones.

This panoply of studies comprises approaches that use non-formal

techniques to detect bugs in certain execution scenarios, as well as

approaches based on formal techniques and aim for an automatic

formal verification of smart contracts. While informal techniques

can test a certain requirement under certain scenarios, they cannot

prove the correctness of a smart contract in general. That’s why

researchers turned to formal verification which has proved to be

efficient to reach such correctness goals.

In this paper, we provide an assessment of the state of the art that

covers studies that fall under this second category. Hence, we focus

on studies that propose formal models (e.g., automata, transition

systems) and use formal techniques (e.g., model checking, theorem

proving). We categorize and evaluate these studies based on two

criteria: the employed verification techniques and the targeted

vulnerabilities. Our intention behind this paper is not to merely

identify relevant work on formal verification of smart contracts,

but to also pinpoint the weaknesses and limits, whether common or

individual, of the proposed approaches. We are then able to point

out improvement areas to explore in future work.

We organize our paper as follows: we start by a broad overview

of the Blockchain technology and common vulnerabilities in smart

contracts in Section 2. In Section 3 we identify various studies

touching on the formal verification of smart contracts, amongwhich

we select a few to present in detail in Section 4. They are then

compared and discussed in Section 5. The paper is concluded in

Section 6.

Methodology for Collecting Existing Works: In this paper, we tried

to put together an exhaustive list of approaches for the verifica-

tion of smart contracts. We resorted essentially to two sources in

our quest, namely the Google Scholar search engine and the DBLP

computer science bibliography, and used combinations of the fol-

lowing keywords for the search: smart contract, formal verification,

Solidity and Ethereum. We then recursively pursued the references

included in these papers’ related work citations. We came out with a

plethora of material, fromwhich we selected 13 studies to include in

our survey on the basis of their relevance to the subject, the unique-

ness of the proposed approach and the number of citations. Our

selection was also guided by previous surveys that were conducted

on more generic scopes. For instance, some studies did not focus

on the formal aspect of the proposed verification approaches for

Solidity smart contracts but rather on their analysis capabilities [5],

while others chose to cover more smart contract languages [16] to

the detriment of being exhaustive in their papers selection. Unlike

such surveys, we choose to consider Solidity as the most used smart

contract language and focus on verification proposals that use for-

mal approaches, offering a more in-depth analysis of the existing

formal verification approaches for Solidity smart contracts.

2 BACKGROUND
In the largest sense of the word, a Blockchain is a distributed ledger,

designed as an append-only list of so-called blocks which are used to

record valid transactions between different parties. Cryptography

is used to establish the links between the Blockchain’s blocks, and

a consensus protocol governs the blocks validation process (i.e.,

mining).

Ethereum is one of the leading public Blockchain plat-forms

nowadays. It supports the notion of smart contracts which practi-

cally makes it a distributed computing platform. Smart contracts

take the famous saying “code is law” into a new perspective where

law becomes code. They can be seen as the equivalent of contracts

written on paper, where the agreed upon terms are transcribes in

lines of code. The faithful execution of a smart contract is guaran-

teed by the laws of the Ethereum Virtual Machine (EVM) semantics

and its immutable nature gives it a sense of finality.

The most commonly-used high-level programming language for

Ethereum smart contracts is Solidity. A Solidity smart contract is

a collection of code and data, residing at a specific address on the

Ethereum Blockchain, which can be invoked either by an internal

account (i.e., a smart contract) or directly by an external account

(i.e., user). Every account is characterized by a persistent storage
(null in case of an external account) and a balance in Ether which

is adjusted by transactions. A transaction is a message used to send

ether from one account to another and/or invoke a smart contract’s

function if the message includes a payload and the targeted account

is an internal one. The execution of such a payload is carried out

according to a stack machine called the EVM. Every smart contract

features a memory and can access certain properties of the cur-

rent block (e.g., number, timestamp...). Besides the storage, stack

and memory, Ethereum has an externally accessible indexed data

structure that can be used to implement events and acts as a log.
A Solidity smart contract may look like a JavaScript or C pro-

gram syntax-wise, but as appearances are often deceiving, they

are actually dissimilar since the underlying semantics of Solidity

functions differently from traditional programs. This naturally calls

on more vigilance from the programmers who might be faced by

unconventional security issues. According to [6], vulnerabilities

in smart contracts seem to often stem from this gap between the

semantics of Solidity and the intentions of the programmer.

In the following we list and explain the most common vulner-

abilities exploitable by attackers. We will be using the illustrative

contracts in Listings 1 and 2 to give examples of such vulnerabilities.

We note that these contracts are written for illustration and do not

exhibit a logical functionality.

Limited stack size: the call stack of the EVM has a maximum size

of 1024 frames which, once reached, would cause the next function

call to fail along with its subcalls. An attacker could exploit such a

limitation by generating a number of calls to the vulnerable contract

as to almost fill the stack, counting on the targeted contract to

mishandle (or not handle at all) the incurred full stack failure, and

use the next function call to exploit this pitfall. We note that the

changes introduced in Ethereum’s hardfork in October 2016 make

this call stack limit practically unreachable. We still mention this

vulnerability for awareness.

Wrong arithmetic/conversion handling: Solidity’s mathematical

operators do not implement safeguards, and consequently, errors

such as overflows and underflows may occur due to the violation

of value limitations of integer data types in the results of such

operations. For instance, the Multiply function in VulnContract

would return 44 instead of raising an exception if executed with (3,

100) as input. This is due to the expected result (i.e., 300) being larger
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than the maximum value of the type uint8 (i.e., 255) and Solidity’s

wrapping in two’s complement representation for integers.

Timestamp dependence: since the execution on a Blockchain

needs to be deterministic for all the miners to get the same re-

sults and reach a consensus, users usually resort to block-related

variables such as timestamp as a source of entropy. Sharing the

same view on the Blockchain, miners would generate the same re-

sult, albeit being unpredictable. Even though this seems to be safe,

it gives the miners a small room for manipulation given that they

can choose a timestamp within a certain range for the new block,

which gives them the possibility to tamper with the results and put

some bias towards a certain user for example. Such a vulnerability

can be exploited any contract relying on a time constraint to deter-

mine its course of action. In our example, the function NewYear()

in Listing 1 is timestamp-dependent.

Costly loop: executing operations on the EVM costs gas. A con-

tract invocation can only carry on if the amount of gas sent by

the user along a transaction is sufficient, which means that costly

loops can easily fail. Such a vulnerability can be exploited if an

attacker gets his hands on a mapping or array data structure to

externally manipulate and drive the execution to failure. In our

example, CostlyLoop() in Listing 1 can fail if it gets called with a

very large input.

Reentrancy: this is by far the most notorious vulnerability since

it led to the infamous DAO attack. An attack of this type can take

several forms (e.g, we can talk about a single function reentrancy

attack or a cross-function reentrancy attack), but the main idea

behind it is that a function can be interrupted in the middle of

its execution and then be safely called again before its initial call

completes. Once the second call completes, the initial one resumes

correct execution. The simplest example is when a smart contract

uses a variable to keep track of balances and offers a withdraw

function. A vulnerable contract would make a transfer of funds

prior to updating the corresponding balance which an attacker can

take advantage of by recursively calling this function and eventually

draining the contract. This can be illustrated by a call to the function

ReentrancyAttack() in Listing 2 which would start by sending some

Ether to the VulnContract in Listing 1 by invoking its Deposit

function and then asking for it back by invoking its Withdraw

function. The VulnContract proceeds by sending the Ether which

invokes the fallback function of the MaliciousContract. This is

where the control flow is handed over to the latter contract. The

fallback function recursively calls Withdraw(), which is allowed

since the condition on its balance is still valid, until VulnContract

is drained.

contract VulnContract {

mapping (address=>uint) balances;

uint256 result;

event started ();

function Deposit () {

balances[msg.sender] += msg.value;
}

function Withdraw(uint amount) {

if(balances[msg.sender] >= amount) {

msg.sender.call.value(amount);
balances[msg.sender] -= amount;

}

}

function Multiply(uint8 x, uint8 y) returns (uint8) {

return x * y;}

function NewYear (){

if(block.timestamp > 1609459199)

emit started ();}

function CostlyLoop(uint256 x) {

for(uint256 i = 0; i < x; i++)

result += i;

}

}

Listing 1: A vulnerable smart contract in Solidity

contract MaliciousContract {

uint balance;
VulnContract vc = VulnContract (0 xbf0061dc ...);

function ReentrancyAttack () {

balance = msg.value;
vc.Deposit.value(balance)();
vc.Withdraw .( balance);

}

function () payable {

vc.Withdraw .( balance);
}

}

Listing 2: A malicious smart contract in Solidity

3 STATE-OF-THE-ART ON SMART
CONTRACTS ANALYSIS: A SYNOPSIS

The different attacks on the different Blockchain platforms brought

light on the various vulnerabilities that they may suffer from drove

experts to work on finding suitable solutions for such weaknesses.

The efforts put into this quest took different directions. Some solu-

tions were based on informal methods while others aimed for more

formal verification approaches (see Figure 1).

Smart Contracts 
Verification Techniques

Informal Verification

TestingLinters

Formal Verification

Theorem Proving Model Checking

Figure 1: Smart Contracts verification techniques

3.1 Informal Techniques
Informal techniques are usually associated with validation rather

than verification. The most common techniques that fall under this

category are testing and simulation. In fact, one straightforward

way to minimize the risk of deploying a vulnerable smart contract

is to take advantage of one of the many existing testnets which are,

as their name suggests, alternate blockchains dedicated for testing

purposes. A smart contract can, for example, be run on Ropsten [2]

before its deployment on the mainnet, which may help with plain

defects but not with imperceptible ones.

The Solcover testing tool [28] was developed to offer a free and
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automatic testing experience of smart contracts. According to the

tool’s associated blog article, it “should only be treated as another

arrow in a collective quiver", as it is unable to fully ensure the

correctness of a smart contract.

Instead of trying out scenarios that may or may not instigate erro-

neous behaviors, other researchers worked on enforcing security

and best practices rules through linters [15], which are tools that

analyze the code to identify and flag programming and stylistic

errors or suspicious constructs.

3.2 Formal Techniques
While informal methods may reduce the risk of bugs in smart

contracts, relying solely on such techniques cannot be enough to

get a full insurance that a smart contract would be correct. Formal

verification techniques can overcome this weakness, though it may

come at the expense of other challenges such as scalability. Such

techniques are used to check the conformance of the developed

system to a predefined specification. They are based on formal

methods of mathematics and are able to provide formal proof of the

correctness of the investigated system with reference to its formally

specified behavior.We can distinguishmainly two families of formal

verification methods, namely those based on theorem proving and

those based on model checking.

3.2.1 Theorem Proving. In this branch of formal verification tech-

niques, the model of the system, along with the properties to prove

need to be modeled mathematically. A theorem prover is then used

to generate proofs and discharge them by applying axiom and in-

ference rules. Several logics can be used in theorem proving (e.g.,

first-order logic, propositional logic). Depending on the complex-

ity of the system, the user may need to interact with the theorem

prover to discharge proofs. Thus, verification approaches based on

theorem proving are seldom totally automated.

Some researchers proposed theorem proving-based approaches

for the verification of Solidity smart contracts. The authors in [8]

propose Solidity* a prototype tool, implemented in OCaml, that

allows the translation of a restricted subset of Solidity into F*, a

functional programming language for program verification. In order

to detect dangerous patterns, the user then needs to define effects

in F* code which are discharged by the F* type-checker. They also

propose EVM*, a decompiler for EVM bytecode into F*, along which

they propose a model for the cost of bytecode operations which can

be used by creating annotations for gas-related violations that can

be discharged by the F* type-checker. Using this approach requires,

not only expertise in F*, but also an understanding of the proposed

translation in order to be able to express the patterns to be checked

and understand the generated typechecking errors. Members of

the Ethereum community present a prototype for verification in-

tegrated into the Solc compiler of Solidity [1]. Their proposition

leverages the Why3 IDE, a theorem prover which can be used on

the WhyML code generated by calling Solc with specific attributes.

Other partial translations of the EVM bytecode based on assisted

proofs like Coq [18] and Isabelle/HOL [3] exist. We note that none

of these approaches offer automatic verification of smart contracts.

3.2.2 Model Checking. The goal of model checking is to verify that

properties (specified in a temporal logic) are satisfied w.r.t a system

(represented as a finite-state model). The general idea here is to

construct the state space of the model, and to explore it in order to

check a specification that is supposed to define the correctness of

the system, and potentially generate counterexamples in case the

specification was not met. The standard approach to do that would

be to generate all the reachable states of the system, represent them

individually and then exhaustively explore the state space to check

for the specified property. The application of such a method would

face a state space explosion problem in case of complex systems

which constrains its application. That’s why other model checking

approaches appeared.

BDD-based symbolic model checking (e.g., SMV [24]) presents a

different way to store the states of the system, grouping them into

sets of states represented by predicates on its state variables in the

form of BDDs (Binary Decision Diagram). Such an approach reduces

the size of the state space to be explored, making for a more efficient

exhaustive exploration, yet it limits the nature of the variables

that can be manipulated. Bounded model checking (e.g., SAT [9],

SMT [29]) is another form of symbolic model checking that does

not rely on a symbolic representation of the states of the system,

but rather on applying decision procedures on prepositional logic.

Such an approach turns the verification problem into a satisfiability

problem. The goal here is to check if there exists values that can

be assigned to the variables in the formula to be verified, so as it

evaluates to false, within a certain number of exploration steps.

While this approach overcomes the state space explosion problem,

it cannot be considered complete since variable assignations under

which the evaluation is false could exist beyond the considered

search depth.

Complementary Techniques. Symbolic model checking is of-

ten seen allied to other techniques in order to improve its efficiency

or widen its application range.

Abstractions (e.g., [4]) can be used with symbolic model checking

to deal with state space explosion in software analysis. An abstrac-

tion can be either sound, in which case properties of the abstract

specification are also properties of the original one, or complete, in

which case properties of the original specification are properties of

the abstract one. While a sound (resp. complete) abstraction guar-

antees false positive-free (resp. false negative-free) results it cannot

guarantee the absence of false negatives (resp. false positives).

Symbolic execution (e.g., [20]) can be placed as the crossover be-

tween a formal verification technique and a testing technique for

programs. Its underlying idea is to represent input variables using

symbols over which the program is symbolically executed instead of

assigning concrete values, which yields symbolic formulae instead

of concrete results. Hence, one result of the symbolic execution

encompasses a set of test cases. In such a context, SMT solvers are

often used to check for the reachability of some part of the code,

which amounts to checking the satisfiability of the conjunction of

the formulae encountered on its corresponding path.

Here we cite studies that make use of model checking-related

techniques in their proposed verification approaches (see Table 1).

Oyente [21] was the first attempt at formal smart contract verifi-

cation. It uses symbolic execution applied at the EVM bytecode of

the contract to generate symbolic execution traces among which it

looks for certain conditions that translate the presence of one of
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Table 1: Smart contracts verification approaches categorized by the used methods

Approaches with Approaches based on Model Checking-related techniques
Theorem Proving Symbolic Execution Abstraction SAT/SMT solvers Model Checking

[8] [1] [18] [3] [26] [30] [21] [32] [12] [31] [10] [26] [30] [21] [32] [12] [19] [22, 23]

the four vulnerabilities it targets. This proposition actually paved

the way for other researchers who wanted to do better in several

subsequent studies. Some of them reused it as part of their own

tools, like in GASPER [12] which exploits the by-product of Oyente

(CFG) in its detection of costly bytecode patterns in terms of gas

consumption. Other researchers opted for extending Oyente to

detect different/additional bugs (e.g., MAIAN [26], SASC [32] and

Osiris [30]). Securify [31] is a security analysis tool for Solidity

smart contracts. It starts by decompiling the EVM bytecode into a

static-single assignment form and symbolically encoding the cor-

responding dependence graph in stratified DataLog, leverages the

Soufflé solver to derive semantic facts on the contract’s data- and

control-flow dependencies using declarative inference rules and

then checks for the presence of predefined patterns that correspond

to the properties the user wants to verify. In fact, the authors use a

designated DSL to define compliance (resp. violation) patterns for

a number of properties to capture sufficient conditions in a given

code to satisfy (resp. violate) such properties. Even though the user

can define other patterns to check for additional security properties,

it is not possible to define patterns that match a contract-specific

property, or arithmetic properties. Besides, in some cases the code

does not match any defined pattern and cannot decide on the safety

of the contract. Vandal [10] follows the same spirit and adopts a

logic-driven program analysis approach. It starts by translating the

EVM bytecode into an abstract register transfer language exposing

its data- and control-flow structures. This language is then trans-

lated into logic relations which are then fed to security analyses

written in Soufflé to detect certain vulnerabilities in the contract.

4 SELECTED FORMAL APPROACHES
Among the studies that we have collected on formal verification of

Solidity smart contracts, 4 can be categorized as theorem proving-

based approaches and 9 make use of model checking-related tech-

niques in their propositions. We note that, despite this second cate-

gory representing a majority, only one work proposed an approach

fully based on model checking in the proper sense of the word (see

Table 1). Such propositions are rather walking the line between

being formal verification-based and testing-based approaches.

In the following subsections, we present four selected approaches

proposed for formal verification of smart contracts, presented in

bold in Table 1. We choose to detail the two approaches presented

in [21] and [19], the two approaches with the most cited papers,

as well as [22, 23] for being the single approach based on model

checking. We also single out the approach in [30] as one of the

propositions based on the veteran Oyente [21].

4.1 FSolidM and VeriSolid
4.1.1 Approach. In [22] the authors propose an FSM-based ap-

proach for the design of secure smart contracts. The premise of

their work is that writing smart contracts in a language such as

Solidity is error-prone because the smart contract writer may not

fully grasp the semantics driving the execution process which often

leads to a contract that does not reflect the actual intentions of its

creator. They hence aim at closing this semantic gap by developing

the FSolidM tool which allows users to design a smart contract as an

FSM (Finite StateMachine) which is then automatically transformed

into a Solidity smart contract. To do so, they propose a definition of

a smart contract as an FSM and outline the transformation process

that generates the corresponding Solidity contract.

To improve the generated smart contract’s security, the authors

propose so called “plugins" that prevent some common vulnera-

bility patterns [6]. These plugins actually translate into modifiers

appended to the contract’s functions to be secured. In Solidity, a

modifier is used to change the behavior of the functions with which

it is associated. In this context, modifiers are used to implement se-

curity patterns into the generated Solidity functions, e.g., by adding

preconditions to check prior to their execution.

The work presented in [22] was in fact laying ground for the next

paper [23] in which the authors present VeriSolid, the improved

version of FSolidM. In fact, [23] extends [22] in that it adds formal

operational semantics to the formerly proposed FSolidM model

and therefore extends the Solidity code generator. This upgrade

introduces the aspect of formal verification into the tool, which

provides the user with the ability to specify intended behavior in the

form of liveness, deadlock freedom and safety properties. It offers

customizable templates to express and check some CTL properties

by a backend symbolic model checker.

4.1.2 Tool. The FSolidM tool offers four plugins to deal with four

vulnerabilities: (1) a locking plugin against the reentrancy attack, (2)

a transition counter plugin to enforce transition ordering and avoid

falling into unpredictable states, (3) an automatic timed transitions

plugin to implement time-constraint patterns and (4) an access

control plugin to manage authorization for functions execution.

While VeriSolid extends FSolidM, it does not take into account

the same vulnerabilities as the latter since it offers the possibility to

express CTL properties through templates such as “transition_b will

eventually happen after transition_a" which can be used to check for

a denial-of-service vulnerability. Additionally, the authors chose to

deal with the reentrancy vulnerability intrinsically by introducing

an In-Transition state into which the system goes at the beginning

of each transition, thus prohibiting any overlapping calls.

In order to incorporate the formal verification aspect, the au-

thors resort to using the NuXmv symbolic model checker [11]

which features SMT-based techniques for the verification of infinite

state systems. For that, they opt for augmenting the initial FSM

model to take in the semantics of the Solidity functions’ statements,

transforming the resulting augmented model into a BIP (Behavior-

Interaction-Priority) transition system [7] (which is guaranteed to

be deadlock-free), using an existing BIP2NuSmv transformation
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tool and feeding the result to the NuXmv model checker along with

the CTL formulae following the provided templates.

Figure 2: Screenshot of the VeriSolid tool - 1

For lack of an underlying business logic in our example in List-

ing 1, we choose to test the tool on an excerpt relative to reentrancy.

We note that in this model we distinguish the first call to deposit

(InitialDeposit) from the rest to get around a modeling restriction

that requires the system to contain a minimum of 2 states.

contract VulnContract {

uint private creationTime = now;
enum States {InTransition , S1, S2}

States private state = States.S1;

mapping (address=>uint) balances;

function Deposit () public {

require(state == States.S2);

state = States.InTransition;

balances[msg.sender] += msg.value;
state = States.S2;}

function InitialDeposit () public {

require(state == States.S1);

state = States.InTransition;

balances[msg.sender] += msg.value;
state = States.S2;}

function Withdraw (uint amount) public {

require(state == States.S2);

require(balances[msg.sender] >= amount);

state = States.InTransition;

msg.sender.call.value(amount);
balances[msg.sender] -= amount;

state = States.S2;}}

Listing 3: Solidity code generated by VeriSolid

Figure 2 shows the model we proposed and Listing 3 the gen-

erated Solidity code. We tested this code and confirmed its insus-

ceptibility to reentrancy. Figure 3 shows the representation using

VeriSolid of the property stating that the function Withdraw can

only be called after the InitialDeposit function had been called,

along with its verification result.

4.1.3 Discussion. In the attempt to integrate the formal verification

aspect into the approach, the first premise of closing the semantic

gap of Solidity got disregarded since the statements constituting

the functions’ bodies need to be provided by the user in Solidity. On

the practical side, it may feel counter-intuitive and even restrictive

for the user to have to think about the smart contracts they want

to write in terms of states at design time, only to find themselves

writing the code themselves nonetheless. Moreover, despite the help

that may come with the proposed templates for CTL properties for

some users, they might as well be seen as an unnecessary restriction

to some othermore experienced users whowould like to verifymore

complicated properties that cannot be expressed within the limits of

the provided templates. As much as some guidance is appreciated,

it should not turn into a barrier to expressivity. Last but not least,

it is important to mention that the models in both FSolidM and

VeriSolid do not take into account any variables. Therefore, no

properties on the evolution of the values of the variables during

the execution of the smart contract can be verified, which also cuts

back on the range of properties the user can check.

4.2 ZEUS
4.2.1 Approach. Zeus [19] is a framework based on symbolic

model checking for the verification of smart contracts. It takes

as input a smart contract written in a high-level language along

with a so-called policy that contains the criteria to be checked

and which the user needs to specify in an XACML-styled template.

The input smart contract code is then instrumented with asser-

tion instructions according to its corresponding policy by means of

static analysis and is passed on to a translator that the authors had

devised to convert it into a low-level intermediate representation

(LLVM bitcode) which is then fed to an existing verification engine

in order to assert the safety of the smart contract. This is based on

the primary description of the approach. As more details are later

presented in the paper, we realize that this is not actually the exact

right ordering of steps since the static analysis is afterwards said

to be performed on top of the intermediate representation rather

than the high-level code and the same goes for the added assertions.

Later on, we also realize that the high-to-low level transformation

is not straightforward. The authors propose an abstract language

into which Solidity code is transformed before undergoing the first

transformation into LLVM bitcode.

As to the considered properties, the authors distinguish two

main families of vulnerable smart contracts: incorrect and unfair

smart contracts. They define correctness as the adherence to safe

programming practices and fairness as the adherence to agreed

upon higher-level business logic.

An incorrect smart contract can have one of the following vulner-

abilities: (1) reentrancy, (2) unchecked sends, (3) failed sends, (4)

integer overflow/underflow or (5) transaction state dependence. An

unfair smart contract can have one of the following vulnerabilities:

(1) absence of logic, (2) incorrect logic or be (3) logically correct but

unfair.

Besides vulnerabilities that fall under these two categories, two

more vulnerabilities which can actually be caused by the miner’s

influence are introduced: (1) block state dependence (BSD) and (2)

transaction order dependence (TOD).

4.2.2 Tool. Zeus was not made available online, but the authors

state that they have implemented a prototype in C++. The tool’s

main components are the policy builder and the Solidity-to-LLVM

bitcode translator. For the former, they leverage the AST output

produced by the Solc compiler and taint analysis on the source

code to extract the information needed to assist the user in forming

the conditions to verify. As for the translator, it takes as input the

smart contract and uses existing LLVMAPIs to generate the bitcode,

which will then be instrumented by adding assertions according to

the built policy. As a backend verifier, they opt for Seahorn [17].
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Figure 3: Screenshot of the VeriSolid tool - 2

4.2.3 Discussion. Proposing an abstract interpretation language

for Solidity to go through before obtaining an LLVM bitcode con-

tributes in improving the scalability of Zeus. In fact, using over-

approximations and reducing functions into summaries and loops

into data domains results in a reduced state space for the symbolic

model checker to be used later. However, a formal reasoning still

needs to be established to prove the actual semantic equivalence

between the two languages (Solidity and the proposed abstract lan-

guage). Furthermore, the authors mention that using the abstract

language allows the support of multiple blockchain platforms, yet

we think that using this bridge language constrains the high-level

languages the tool can support. To integrate a language other than

Solidity, new correspondences with the proposed abstract language

would have to be defined (if not the whole language), the translation

into LLVM would have to be revised and the automation of the

assertions insertions would have to be reimplemented.

Leveraging the use of the LLVMbitcode extends the reach of Zeus

in the sense that it can make use of any backend symbolic model

checker supporting that standard. Seahorn [17] is the first choice

of the authors but not the only one. It was chosen for its ability to

generate verification conditions using CHCs (Constrained Horn

Clauses) over LLVM bitcode. Other symbolic model checkers can be

used, such as SMACK [27], but that may require some modifications

on the LLVM bitcode as for example some model checkers might

use different lengths for the same type which needs to be taken

into account when switching the verifier. The authors state that

CHCs are suitable for the representation of verification conditions,

but do not elaborate. We think that the tool may be able to verify a

wider range of properties if it were to support the representation

of properties using other logics besides CHC.

We also note that Zeus only accounts for parameters that can

be computed at the source code level and hence cannot verify

properties relating to parameters as gas consumption.

4.3 OYENTE
4.3.1 Approach. Besides the smart contracts analysis tool they call

Oyente, the authors of [21] also propose refinements/recommen-

dations to Ethereum’s protocol in the form of improvements to its

operational semantics in order to fix certain security problems. In

this survey, we are only interested in the Oyente tool that they

propose as a “pre-deployment mitigation”. It is based on symbolic

execution and functions over the bytecode which needs to be pro-

vided as input along with Ethereum’s global state. The latter would

serve as an initialization for the contract’s variables. Message call-

related variables are however treated as input symbolic values. The

general idea behind Oyente is to symbolically explore a control flow

graph corresponding to the bytecode by symbolically executing

instructions within states of that graph and use a symbolic con-

straint solver to decide on the feasibility of branching conditions.

The possible presence of vulnerabilities is detected by checking for

specific conditions in the generated symbolic traces.

This tool targets four bugs: (1) TOD, (2) timestamp dependence,

(3) mishandled exceptions and (4) reentrancy.

4.3.2 Tool. Oyente [21] is implemented in Python, uses Z3 [13]

as a backend SMT solver and detects the 4 discussed problems

(see 4.3.1). Its design has four main components: (1) CFGBuilder: it
outputs a Control Flow Graph of the bytecode. This graph is only

partly constructed statically as some edges are later added after

symbolic execution. (2) Explorer: this is mainly an interpreter loop

that symbolically executes one instruction at one state at a time,

starting from the entry node of the CFG generated by the previous

component. The Explorer actually simulates the behaviour of EVM

instructions and makes use of Z3 to decide on path conditions. The

loop ends when no more unexplored states exist or when a timeout

is reached. The CFG is potentially enriched by the end of this phase

and a set of symbolic traces is outputted. (3) CoreAnalysis: it in turn

comprises 4 components to detect the 4 previously introduced bugs.

These components work by checking specific conditions when

analyzing the symbolic traces resulting from the Explorer in order

to flag the possible presence of the corresponding bugs. (4) Validator:
this step is added to further reduce the rate of false positives. The

user, however, still needs to intervene to confirm that the flagged

bugs are a real threat.

The tool has been in active development up until May 2018,

and some unreported features were added to the updated version.

Mainly, in its latest version, Oyente can supposedly detect the

following issues (in addition to the previously mentioned issues):

(1) integer overflow/underflow, (2) Parity Multisig bug 2 and (3)

callstack depth attack.

Tested on our example in Listing 1, the paper’s version of Oyente

was able to detect the timestamp dependence and the reentrancy,

as shown in the truncated results in Figure 4.

Figure 4: Screenshot of the Oyente tool
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4.3.3 Discussion. Oyente can be seen as the first attempt at formal

smart contract verification, which paved the way for researchers

in several subsequent propositions. Despite its ability to detect

important vulnerabilities in smart contracts, Oyente is not a com-

plete verifier. Its major drawback is that its reported errors may

be spurious. In other words, its results may contain false positives.

One example for that is flagging a false reentrancy vulnerability in

a code that uses a send function, which should not pose a threat

unless its default gas were altered. This can actually be explained by

the fact that Oyente relies on the bytecode of the smart contract, in

which both functions send and call are mapped to the same CALL

bytecode, which translates into contextual information loss. To

detect reentrancy, the tool checks the path condition before each

CALL it comes across and checks if it still holds after the bytecode’s

execution, in which case it is registered as a vulnerability.

4.4 OSIRIS
4.4.1 Approach. This work [30] specifically targets integer vul-

nerabilities in Solidity smart contracts. More precisely, the authors

investigate the presence of 3 types of bugs in such contracts: (1)

arithmetic bugs like integer underflows/overflows and bugs caused

by divisions where the denominator is zero, (2) truncation bugs

which can happen when converting a value into a new type with a

shorter range than that of its initial type and (3) signedness bugs

that can occur when converting a signed integer typed value into

an unsigned integer type (or the opposite).

The proposed approach works on integer bugs detection at the

bytecode level and is based on two techniques, namely symbolic

execution and taint analysis. It comprises 3 phases:

Integer type inference: even though Solidity is a statically typed

language, typing information is supposed to get lost at the bytecode

level. The compiler, however, leaves behind discrete trails (e.g., AND

bitmask, SIGNEXTEND opcode, etc) that the authors track down

to deduce the size and sign of integers in the bytecode.

Integer bugs detection: a different detection technique is proposed

for each of the targeted integer bug types: (1) arithmetic bugs: a
constraint is emitted to the backend solver for each arithmetic in-

struction. This constraint is formed so that it is only satisfied if a set

of predefined in-bounds requirements specific to the instruction in

question are not totally met. Consequently, a bug is detected if one

of the emitted constraints under some path conditions is found to be

satisfiable by the solver. (2) truncation bugs: such bugs are detected

by tracking the instructions used by Solidity to perform truncation

(i.e., AND and SIGNEXTEND for signed and unsigned integers). A

constraint is formed for such instructions as to be satisfied if the

input value is larger than the output. Consequently, a truncation

bug is detected if one of the emitted constraints under some path

conditions is found to be satisfiable by the solver, all while ignoring

two specific patterns for intentional truncation corresponding to

truncation due to a conversion to type address and truncation as

a technique to fit more than one variable into the same storage

slot. (3) signedness bugs: for this type of bugs, the authors reuse
an approach that was initially proposed for Linux programs [25]

and adapt it for Solidity smart contract. The gist of the applied

method is to infer information on signed and unsigned types on the

values from the executed EVM instructions and spot the symbolic

variables that can be assigned both types.

False positives reduction: the authors actually consider this as two
separate steps, since they use two different techniques to reduce the

rate of generated false alarms. The first step is to apply taint analysis

in order to check only instructions whose input data is tainted (can

be manipulated by an attacker) and further validate only the ones

that touch sensitive locations (can be harmful in that they may

alter the execution path, storage and ether flow). The second step

of false positives reduction is recognizing detected integer bugs

which originate from unharmful code such as an intentional check

(if condition) meant to catch an overflow bug.

4.4.2 Tool. The implemented tool called Osiris is written in Python.

It operates over the bytecode but can accept Solidity code as input

which it internally compiles into bytecode. It consists of 3 main

components: (1) symbolic analysis is basically a reuse of the previ-

ously presented Oyente tool, used to generate the bytecode’s CFG

and symbolically execute its instructions, (2) taint analysis checks,
for each executed instruction, whether it pertains to a specific set

of instructions defined by the authors as susceptible of being used

by an attacker, in which case the locations it affects (in the stack,

memory and storage) are tagged and the propagation is carried out

according to the EVM semantics. It then checks if this instruction

can be impactful on sensible locations and (3) integer error detec-
tion is called upon the instructions detected by the taint analysis,

implements the errors detection methods discussed above and uses

Z3 to check for the feasibility of the created constraints.

Figure 5 shows the result for running Osiris on our example in

Listing 1. The tool detected an overflow bug as well as a truncation

bug and located them in the code.

4.4.3 Discussion. This work focuses on a restrictive range of vul-

nerabilities, covering specific integer-related bugs. On the one hand,

the approach shows better results than other existing approaches

dealing in part with such vulnerabilities, yet its range of application

is thereby restricted. Additionally, Osiris points out the origin of

the detected vulnerability in the analysed code but does not provide

an example of an execution that may lead to an error, which would

make it easier for the contract writer to revise the code.

5 COMPARISON AND DISCUSSION
The majority of the discussed approaches are based on the analysis

of the EVM bytecode instead of the higher-level Solidity source

code which can be explained by Solidity’s lack of formal semantics.

On the other hand, relying on the bytecode has its own impediment

since it leads to the loss of contextual information, hence limiting

the range of properties that can be verified on the contract.

We notice that most of the proposed approaches, led by the first

proposition [21], use symbolic execution to generate the traces that

would be used for the verification. Such approaches usually use

under-approximation which means that critical violations can be

overlooked.

A survey on the vulnerabilities in smart contracts [14] reports

49 bugs that can occur in a smart contract, 29 of which were cate-

gorized using the Bugs Framework of NIST into 10 bug classes. As

shown in Table 2, the proposed verification methods only target a
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Figure 5: Screenshot of the Osiris tool

Table 2: Vulnerabilities supported by the proposed smart contract verification approaches

Tool Can express properties using Reported detected vulnerabilities
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[23] templates for CTL expressions - - - - + - - +

[19] XACML templates for CHC - ± + + + - - +

[21] x + ± + + + + - +

[30] x - + - - - - - -

[31] compliance/violation patterns in a DSL - - - + + - - +

[10] security analysis as a logic specification in Soufflé - - - - + + - +

[26] x - - - - - + - +

[12] x - - - - - - - +

[32] x + ± + + + - - +

limited number of these bugs, with a maximum of 18 claimed by

the commercialized version of Securify [31]. We also note that 4 ap-

proaches give the user the ability to express customized properties

to check. None of them, however, supports contract-specific proper-

ties. Moreover, we underline that only single function reentrancy is

considered in all of the existing approaches. Furthermore, none of

the proposed approaches deals with the verification of interacting

contracts. This means that the verification of smart contracts is a

field that, despite having been investigated at an early stage, still

needs to be further studied to achieve correctness in smart contracts

and consolidate the desired trust in the Blockchain environment.

In the following we report tools comparisons included in their

corresponding papers.

Zeus vs Oyente in [19] The evaluation of Zeus was done on

a dataset of 1524 smart contracts and its results were compared

to Oyente’s for the commonly treated vulnerabilities (reentrancy,

unchecked send, BSD and TOD). 54 contracts were reported by

Zeus to be vulnerable to reentrancy against 265 by Oyente. The

undetected bugs by Zeus were said to be false positives caused by

Oyente considering reentrancy possible with send calls. This is not

totally true, as using send can still be susceptible to reentrancy if

the allocated amount of gas were to be manually increased. For

the unchecked send vulnerability, Zeus was reported to detect 324

bugs with 3 false positives, against 112 bugs by Oyente with 89

false positives. The results for BSD show more detected bugs by

Zeus than Oyente, which is only logical since the former considers

multiple block variables while the latter only considers the block’s

timestamp. Zeus is also reported to detect more TOD bugs (607)

than Oyente (126) with a lower false alarm rate.

Osiris vs Zeus in [30] The authors of [30] evaluated their tool

using a subset of the dataset of smart contracts previously used by

Zeus (they retrieved 883 out of 1524 contracts), and compared it

to the latter for their commonly detectable bugs. Their reported

results show a big difference in the number of detected integer

overflow/underflow bugs with Zeus detecting 628/883 and Osiris

detecting 172/883. They claim that this difference can be explained
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by Zeus prioritizing completeness over the real exploitability of its

reported bugs. They also bring into question Zeus’s soundness by

manually investigating 5 contracts that were reported as containing

bugs by Osiris but not by Zeus and confirming their unsafety.

SASC vs Oyente in [32] The authors in [32] report more detected

timestamp dependence bugs using their tool (866 by SASC against

292 by Oyente out of 2952 contracts). In fact, this can be explained

by the different ways both tools use to target such a vulnerability.

While Oyente detects the use of timestamp whenever it is related

to ether transfer only, SASC tarets its use in other operations as

well. We also note that SASC is able to locate the bugs in the corre-

sponding code, unlike Oyente that only signals their presence.

Securify vs Oyente in [31] Results were compared to Oyente

in [31] for the detection of reentrancy, TOD and mishandled excep-

tions. The authors report better results overall for Securify. Reen-

trancy was detected in the same number of contracts by both tools,

with presence of false positives with Oyente but not with Securify.

As for the other two vulnerabilities, Securify was reported to detect

more valid occurrences than Oyente and no false negatives at all,

albeit with a slightly higher number of false positives.

6 CONCLUSION
As the monetary value circulating on Ethereum keeps rising, and

since smart contracts are responsible for the management of Ether

across the Blockchain, providing means to rigorously guarantee

the security of smart contracts becomes an inescapable requisite.

Our overview of contributions towards the formal verification of

Solidity smart contracts shows that while a big step has been taken,

the extra mile has yet to be walked. In fact, the proposed approaches

target but a limited number of vulnerabilities (e.g., in comparison

with the number of reported bugs in [14]). More importantly, as

the reach of smart contracts gains more ground touching more

application fields, the need for the verification of domain-specific

properties grows more urgent. We think that developing a verifica-

tion approach that relies on defining such properties in appropriate

logic languages might just bring an answer to such an exigency.
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