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Abstract—While Blockchains can open intriguing opportunities
of research in many application contexts, they come with the
risk of bringing new unconventional problems. In fact, because
of the monetary value they hold, Blockchains have been subject
to many attacks. Smart contracts, which are at the core of
second-generation Blockchains, have been proven to be the
origin of such attacks due to the exploitable vulnerabilities
their code may hold. It is therefore an essential requirement to
prove the correctness of the smart contracts to be deployed on
a Blockchain to ensure its protection. The existing approaches
have been focusing on targeting generic vulnerabilities like
reentrancy, without offering the possibility to check temporal-
based contract-specific properties. In this paper, we aim to
address smart contracts verification while supporting such
properties. We propose and implement a transformation of
Solidity smart contracts into Coloured Petri nets and investi-
gate the capability of existing model checking tools to check
specific temporal properties of the formally modeled contract.

Index Terms—Blockchain; Formal Verification; Smart Con-
tract; Solidity; Coloured Petri Nets; Temporal properties.

1. Introduction

The reach of the Blockchain technology has expanded to
a myriad of application domains such as healthcare, insur-
ance, Business Process Management, etc. Such an expansion
is owed to Blockchain’s inherent characteristics, namely its
decentralized nature, ability to provide trust among trustless
parties, immutability and financial transparency.

Blockchain is still considered an evolving technology
whose extent has not been fully revealed. Working towards
new ways of exploiting it, though can lead to valuable
exploits, is undoubtedly a risky endeavor. In fact, smart
contracts can turn into a weak spot in this context. As a

smart contract cannot be altered once it has been deployed
on the Blockchain, it goes without saying that it cannot
be corrected either, which makes verifying its correctness
prior to its deployment an indispensable necessity. Many
attacks on multiple Blockchain platforms have stemmed
from smart contract vulnerabilities, like the attack exploiting
an integer overflow vulnerability on the Bitcoin blockchain
in August 2010 and the DAO attack exploiting a reentrancy
vulnerability on Ethereum in June 2016.

Researchers have quickly started to address such prob-
lems by proposing informal as well as formal methods to
enhance the security of smart contracts and ensure their cor-
rectness. While informal techniques can test a smart contract
under certain scenarios, they cannot be relied on to verify
specific properties defining its correctness which is where
formal techniques prove to be efficient. We note that in our
work, we are interested in Ethereum smart contracts as it
is currently the second largest cryptocurrency platform after
Bitcoin besides being the inaugurator of smart contracts,
and more particularly those written in Solidity [1] as it is
the most popular language used by Ethereum.

In this paper, we propose an approach based on Coloured
Petri Nets (CPNs) [2], for the formal verification of Solidity
contracts [3]. Our choice of this formalism is driven by its
ability to combine the analysis power of Petri nets with the
expressive power of programming languages, which makes
it a suitable candidate for the modeling and verification of
large and complex systems. The main idea is to transform
a Solidity smart contract into a hierarchical CPN model
depicting the functionality of the former. This model is then
analyzed and the correctness of the represented contract is
proven via the verification of a set of temporal properties
which are able to express contract-specific properties rele-
vant to its data- and control-flows. We propose an algorithm
that automates such a transformation, implement a prototype
to prove its feasibility and leverage existing tools, namely
CPN Tools [4] and Helena [5] to verify system properties.
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Our paper is structured as follows. Section 2 presents
a use case, Section 3 provides essential prerequisites and
Section 4 presents the related works. Our contribution is
introduced in Section 5 and our verification results are
presented in Section 6 followed by a conclusion and future
perspectives in Section 7.

2. Use Case: Blind Auction

Our use case is adapted from an example in [1]. Par-
ticipants in a blind auction have a bidding window during
which they can place their bids. A participant can place
more than one bid and the placed bid is blinded. The
bidder has to make a deposit with the blinded bid, with a
value that is supposedly greater than the real bid. Once the
bidding window is closed, the revealing window is opened.
Participants proceed to reveal their bids by sending the
actual values of the bids along with the used keys. The
system verifies whether the sent values correspond with the
placed blinded bids and potentially updates the highest bid
and bidder’s values. If the revealed value of a bid does not
correspond with its blinded value, or is greater than the
deposit, the said bid is considered invalid. Once the revealing
window is closed, participants can proceed to withdraw their
deposits. A deposit made along a non-winning, invalid or
unrevealed bid is wholly restored. In case of a winning
bid, the difference between the deposit and the real bid
is restored. The auction is terminated when all participants
withdraw their deposits. Figure 1 describes the workflow of
the blind auction system and Listing 1 represents an excerpt
of the Solidity smart contract implementing it.
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Figure 1. Blind Auction Workflow

contract BlindAuction {
struct Bid {bytes32 blindedBid; uint deposit;}
uint public biddingEnd, revealEnd;
mapping (address => Bid[]) public bids;
address public highestBidder;
uint public highestBid;
mapping (address => uint) pendingReturns;
modifier onlyBefore (uint _time) {
require (now<_time);_;}
modifier onlyAfter (uint _time) {
require (now>_time);_;}
constructor (uint _biddingTime, uint
_revealTime) public {...}
function bid(bytes32 _blindedBid) public
payable onlyBefore (biddingEnd) {...}
function reveal (uint[] values, bytes32[]
secrets) public onlyAfter (biddingEnd)
onlyBefore (revealEnd) {...}
function withdraw() public onlyAfter
(revealEnd) {
uint amount = pendingReturns[msg.sender];

if (amount > 0) {
if (msg.sender != highestBidder)
msg.sender.transfer (amount) ;
else
msg.sender.transfer (amount -
highestBid) ;
pendingReturns [msg.sender] = 0;}}}

Listing 1. Excerpt of the Blind Auction smart contract in Solidity

3. Preliminaries on Coloured Petri Net

A Petri net [6] is a formal model with mathematics-based
execution semantics. It is a directed bipartite graph with
two types of nodes: places (drawn as circles) and transitions
(drawn as rectangles). Despite its efficiency in modelling
and analysing systems, a basic Petri net falls short when
the system is too complex, especially when representation
of data is required. To overcome such limitations, extensions
to basic Petri nets were proposed, equipping the tokens with
colours or types and hence allowing them to hold values. A
large Petri net can therefore be represented in a much more
compact manner using a Coloured Petri net [2].

Definition 1 (Coloured Petri net). A Coloured Petri Net is

a nine-tuple CPN = (P, T, A,%,V,C,G, E, I), where:

1) P is a finite set of places.

2) T is a finite set of transitions such that PNT = 0.

3) AC(PxT)U(T x P) is a set of directed arcs.

4) X is a finite set of non-empty colour sets.

5) V is a finite set of fyped variables such that
Type|v] € 3 for all variables v € V.

6) C:P — X is a colour set function that assigns a
colour set to each place.

7 G:T — EXPRy, where EXPRy is the set of
expressions provided by CPN ML with variables in
V', is a guard function that assigns a guard to each
transition ¢ such that Type[G(t)] = Bool.

8) FE: A — EXPRy is an arc expression function
that assigns an arc expression to each arc a such
that T'ype[E(a)] = C(p)ms, where p is the place
connected to the arc a (i.e., the type of the arc
expression is a multiset type over the colour set of
the connected place).

9) I:P — EXPRy is an initialisation function that
assigns an initialisation expression to each place p
such that Type[I(p)] = C(p) ms-

A transition is said to be enabled if a binding of the
variables appearing in the surrounding arc inscriptions exists
such that the inscription on each input arc evaluates to a
multiset of token colours that is present on the corresponding
input place. Firing a transition consists in consuming (resp.
adding), from each input place (resp. to each output place),
the multiset of tokens corresponding to the input (resp.
output) arc inscription (see [2] for more details).

4. Related Works

Existing studies on formal verification of smart contracts
follow two main streams [7]: The first is based on theorem
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proving [8], [9]. Approaches based on this technique cannot
be fully automated as the user usually has to intervene
to assist the prover. The second includes studies based on
model checking, which is where our work can be situated.
Most of the studies under this second category use symbolic
model checking coupled with complementary techniques
such as symbolic execution and abstraction. The first attempt
was Oyente [10], a tool that targets 4 vulnerabilities, namely
transaction order dependence, timestamp dependence, mis-
handled exceptions and reentrancy. It operates at the EVM
bytecode level of the contract, generating symbolic execu-
tion traces and analyzing them to detect the satisfaction of
certain conditions on the paths which indicates the presence
of corresponding vulnerabilities. Numerous studies followed
in the footsteps of this work, some of which exploited
some of its components in their implementations (e.g.,
GASPER [11]), while others extended it to support the
detection of other vulnerabilities (eg., Osiris [12]).

VeriSolid [13] is an FSM-based approach that aims at
producing a correct-by-design contract rather than de-
tecting bugs.The proposed approaches usually use under-
approximation (e.g., in the form of loop bounds) which
means that critical violations can be overlooked. This ex-
plains the presence of false negatives and/or positives in
their reported results. We also note that most of the existing
studies target specific vulnerabilities in contracts, and few
are those that allow expressing customizable control flow-
related properties while none target data-related properties.

More recently, attempts have been made to use CPN
for the verification of smart contracts. The work in [14]
shows an example of verification of behavioural properties
applied manually on a CPN model for a case study of a
crowdfunding smart contract. It does not, however, propose
a complete approach with generic transformation rules that
can be automated and applied to any smart contract. Another
CPN-based proposition was presented in [15]. This ap-
proach, despite being based on CPN, cannot be used for the
verification of data-flow related properties as the generated
model focuses on the representation of the workflow.

Our proposed approach aims at overcoming such short-
comings by providing the means to elaborate behavioural
and contract-specific properties (using temporal formulae)
that can depend on the data-flow and hence is not bound
to a restricted set of reported vulnerabilities. We note
that our approach relies on explicit model checking and
that our transformation algorithm operates on the source
code, and therefore, we avoid the consequences of under-
approximation as well as contextual information loss.

5. Solidity-to-CPN Transformation

We propose an algorithm that transforms a Solidity smart
contract into a hierarchical CPN model over which CTL
properties can be verified (cf. Section 6). The general idea
is to start from a CPN model (referred to as level-O model)
representing the general workflow of the smart contract and
then to build on it by embedding it with submodels (referred
to as level-1 models) representing the execution of the smart
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contract functions. We note that from a smart contract, only
the functions’ internal workflow can be deduced since the
code defines the functions but not the way they are intended
to be used. In this work, we use the level-0 model as a
representation of this missing information and focus on the
construction of the functions’ corresponding submodels.

In a level-0 model, we distinguish 2 parts, namely the
user’s behaviour part which models the way users can
interact with the system and the smart contract’s behaviour
part which represents the system. These two are linked via
communication places. Figure 2 shows the level-0 model of
the blind auction use case.
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Figure 2. Blind Auction - Level-0 Model

5.1. Notations on the Model’s Elements

5.1.1. Places P. In the Smart Contract’s Behaviour part,
we define state places Ps as places that hold the state
of the smart contract, namely the contract’s balance and
the values of the state (global) variables. Their colour is
as follows [uint: contractBalance, type;: stateVariabley, ...,
type,: stateVariable, ]

Among communication places, we distinguish:

e parameter places Pp: that convey potential inputs
of function calls along with the caller’s information
and the transferred value. Their colour is as follows
[address: sender, uint: balance, uint: value, type;:
inputParametery, ..., type,: inputParameter,]

e return places Ppr: that communicate potential re-
turned data from functions along with the caller’s
updated information. Their colour is as follows [ad-
dress: sender, uint: balance, typeg: returnParameter]

e interface places Pr: that handle handovers between
the function calls and their execution. They are
uncoloured (basic) places.

On level 1 (a transition’s detailed sub-model), we dis-
tinguish 2 types of places:

e control flow places P.;. Their colour is a
metaColour defined at each transition of level O as
the concatenation of the colour of its input control
flow place ot[cf] € Ps and the colour of its input
parameters place et[input] € Pp.

e data places Py,:, where each place is of a colour
corresponding to the represented variable’s type.
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5.1.2. Transitions 7. For a transition ¢t € T' we distinguish:

o ot[cf] € P.y U Pg, the input control flow place of ¢

o et[input] € Pp, the input parameters place of ¢

e et[com| € Pg, the input communication place of ¢

o otldata] C Pyaq, the input data places of ¢ (in case
of a submodel transition)

o tecf] € Py U Pg, the output cf place of ¢

e e [output] € Pg, the output return place of ¢

o te[data] C Pjaia, the output data places of ¢ (in
case of a submodel transition)

o te[com] € Pc, the output communication place

5.1.3. Statements S. We see a smart contract as a set of
statements. A statement can be either a compound, a simple
or a control one. A simple statement can be an assignment,
a variable declaration, a sending or a returning statement.
A control statement can be a requirement, a selection or a
loop (a for or a while loop).

A complete list of the elements is provided on github!.

5.2. Transformation Algorithm

Due to the lack of space, we only present an excerpt of
the main algorithm responsible for the generation of sub-
models and the transformation algorithms for a compound
and an assignment statements.

Algorithm 1: CREATESUBMODEL(Y; St; Pin; Pouts
Pdata; MC)
Input

: t, statement st, cf input place p;,, cf
output place Doy, set of internal data
places P44, meta colour mc
Output: submodel of transition ¢

1 set default place colour to mc

2 switch st do

3 case compound st {st[1]; st[2]; ...; st[N]} do
4 | BUILDCOMPOUNDST(%;5E; Din; Pouts Pdatas MC)
5 end case

6 case simple st do

7 switch st do

8 case assignment st {strus, stras} do
9 BUILDASSIGNMENTST(, 5t;pin;

Pout;sPdatas mc)

10 end case

11

12 end switch
13 end case

14 end switch

CREATESUBMODEL browses the body of the transition’s
corresponding function recursively, statement by statement,
and creates snippets of a CPN model, according to the type
of the processed statement, that interconnect to create the
transition’s submodel. The full algorithms and descriptions
can be found in the Solidity2CPN document available at
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this repository! along with the algorithms responsible for
connecting the submodels to the level-0 model.

Algorithm 2: BUILDCOMPOUNDST(t; St; Pin; Pouts
Pdata; MC)
Input

: t, compound st {st[1]; st[2]; ...; st[N]},
cf input place p;,, cf output place pyy+,
set of internal data places Py,¢,, meta
colour mc
Output: snippet of statement st

1 fori=1..N —1do

2 | create place p;

3 end for

4 CREATESUBMODEL(Z,st[11,pinP 1, Paatay MC)

s for it =2..N — 1 do

6 | CREATESUBMODEL(t,st[il,pi.1,pisPdatar MC)

7 end for

8 CREATESUBMODEL(?,5t[N1,pN-1,Pouts Pdatas MC)

Compound statement {st[1]; st[2]; ...; st|[N]}: the al-
gorithm is re-executed on each component statement st[i],
after creating N —1 control flow places (of the metaColour
colour) to interconnect the resulting CPN snippets while
merging the entering point of the snippet of st[1] with the
entering point of the snippet of st and the exiting point of
st[N] to that of the snippet of st.

@459 006595 O-Qaod g
P | iplo ;P2 pN-1| j

Figure 3. Compound Statement Pattern

Algorithm 3: BUILDASSIGNMENTST(t; st; pin;
Pout; Pdata; MC)

Input : ¢, assignment st {str s, Strus}, cf input
place p;,, cf output place pyq:, set of
internal data places Py,¢,, meta colour mc

Output: submodel of transition ¢

1 create transition ¢’ and arc from p;,, to t’' for
v € stgus.vars\{stLuys.var} do
2 create arcs Pygia[v] = t'5 ' — Pyata[V]
3 end for
4 if stpgs.var is a local variable then
5 create arcs Pyqa[strms.var] = t's t' = pout;

t'" = Pyata[strrs.var] with inscription sty s

6 else

7 create arc t' — poy¢ With inscription outlnsc <
inlnsc in which the variable corresponding to
strps.var is replaced by strms

8 end if

Assignment statement (stpps, Strmps): a transition ¢’ is
created with input and output links to, respectively, the input

1. https://github.com/Sol2CPN/WETICE2021
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(pin) and output (poy:) places. ¢’ is connected to the places in
Pjatq that correspond to the variables used in the statement’s
RHS with input/output links (to read the data). In case of a
local variable assignment (Figure 4), an input/output link is
created with the place corresponding to the assigned variable
in the statement’s LHS with the new value (st g) inscribed
on the output link. In case of a state variable assignment, the
new value (strps) is given in the variable’s corresponding
placement on the link to the output (p,,:) place.

J

Figure 4. Local assignment statement pattern

5.3. Application on the Use Case

The application of the algorithm on the level-O model of
the Blind Auction use case (see Figure 2) yields a hierar-
chical CPN model whose level-1 submodels are created by
the execution of CREATESUBMODEL. Figure 5 shows the
submodel for transition withdraw.

withdraw |

i
Parameters

Figure 5. SubModel of transition withdraw

The -coloured places represent control flow
places P,y of a metaColour specific to the submodel,
whereas places of other colours inside the dashed-line box
are places of the relative Py,:,. Places outside the box
are the input/output places of the corresponding level-0
transition, among which the dark grey places are state places
in Pg, uncoloured places are interface places in Pj, dark
blue places are return places in Pr and the others (blue
for withdraw) are parameter places in Pp. The submodels
inside the boxes are the product of CREATESUBMODEL.

The rest of the submodels can be found on github'.

6. Smart Contract Verification

6.1. State Space Analysis Results

In Table 1, we present the results of the state space
analysis of our designed model, rendered by both CPN Tools
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and Helena, for different initial marking values.

We note that the state space generated for each scenario
by both tools has the same size, both with and without
considering hierarchy (noted H and NH), which validates
the conformance of the model written in Helena’s language
with that which was visually designed using CPN Tools.
We can clearly see that Helena (the highlighted columns)
outperforms CPN Tools (the non-highlighted columns) with
a considerably shorter execution time.

6.2. Temporal Properties Verification

6.2.1. Using CPN Tools. Using the ASK-CTL library we
were able to formulate a number of temporal properties. For
instance, we defined a fermination property to check that
all the dead markings in the state space correspond to final
markings of the model, and therefore check that the model
is deadlock-free. To do so, we characterize the termination
property as the model’s capability to always reach a terminal
state (a dead marking) where the following conditions are
met: (C1) in the Smart Contract’s Behaviour part, all places
have to be empty except for 7' that must contain one token,
(C2) all Communication places must be empty and (C3)
in the User’s Behaviour part: (C317) the markings of places
PossibleSecretKeys, PossibleBids and PossibleDeposits must
be the same as their initial markings, (C32) tokens in W2
must correspond to the users who have placed bids, (C33)
the union of the sets of users who have not placed bids and
those who have must correspond to the set of initial bidders
and (C34) every other place must be empty. The code for
the termination property would look like this:
fun Termination n = Terminal n andalso Cl n

andalso C2 n andalso C31 n andalso C32 n

andalso C33 n andalso C34 n
val terminationFormula = INV(EV(NF ("termination",

Termination)));
eval_node terminationFormula InitNode;

where C1, C2, C31, C32, C33 and C'34 are functions that
check the corresponding aforementioned conditions on a
node n. The evaluation of this property on our model returns
true which confirms that all dead markings in the state space
do correspond to final markings and that consequently the
model contains no deadlocks.

6.2.2. Using Helena. The same result could be obtained
using Helena for the termination property:

1tl property termination: [] <> wvalid_termination;

with valid_termination representing the conjunction of the
explained conditions. For lack of space, we include the full
definitions of the used functions, along with definitions of
other properties in the Solidity2CPN document'.

6.2.3. Discussion. Considering that Helena showed better
results in terms of execution times, we decided to implement
our prototype! of the transformation algorithm targeting its
specification language. While some temporal properties can
be expressed using both logics (LTL and CTL), like the
aforementioned termination property, we note that some
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TABLE 1. STATE SPACE ANALYSIS RESULTS FOR DIFFERENT INITIAL MARKINGS

Possible Bidders 1 2 3 4 5 1 1
Possible Bids 1 1 1 1 1 2 3
Possible Secret Keys 1 1 1 1 1 2 3
Possible Deposits 1 1 1 1 1 2 3
State Space H 0s | Os Os | Os 0Os 2s 2s 622s 42s - 0s 0Os 1s 87s
Generation NH Os | Os Os | Os 0Os Is 0Os 152s 11s - 0Os 0Os 0Os 16s
Number of H 44 583 9166 156117 2714288 - 1288 79584
Nodes NH 24 235 3118 47621 766548 - 434 19984
Number of H 46 900 19784 446326 9948298 - 1411 97463
Arcs NH 26 378 7106 145062 3002038 - 555 22980
Number of H 3 10 35 124 437 - 65 3695
Dead Markings | NH 3 10 35 124 437 - 65 3695
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