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“Correctness is clearly the prime quality.
If a system does not do what it is supposed
to do, then everything else about it matters
little.”

Bertrand Meyer
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Résumé

La blockchain, qui a d’abord été révélée comme la technologie à l’origine du bitcoin, a
dépassé le cadre des crypto-monnaies pour s’étendre à un large éventail de domaines
d’application, dont la gestion des processus métier (BPM). En effet, ses propriétés
intrinsèques, telles que sa structure décentralisée, sa capacité à donner confiance à
des parties non dignes de confiance, son immuabilité et sa transparence financière,
semblent fournir les instruments nécessaires pour concevoir des solutions adaptées aux
problèmes actuels de la BPM, en particulier pour les collaborations. Cette évolution
est principalement due à l’introduction du concept de contrat intelligent dans les
blockchains. Un contrat intelligent permet l’exécution de séquences de transactions
interdépendantes tout en respectant les règles qui y sont établies. D’autre part, un
processus métier peut être considéré comme un ensemble d’activités interconnectées
par des relations causales dans le but d’atteindre un objectif métier. Par conséquent,
les contrats intelligents semblent être d’excellents candidats pour la mise en œuvre et
l’automatisation des processus métier (BPs).

Malgré les avancées significatives dans l’adoption de la Blockchain pour le BPM, la
technologie n’en est encore qu’à ses débuts, et le déploiement des contrats intelligents
pour la mise en œuvre des BPs ne peut être considéré comme sûr. Par conséquent,
prouver la correction des contrats intelligents à déployer sur une blockchain est crucial
pour l’intégrité des processus métier spécifiés.

Dans notre travail, nous proposons une approche formelle basée sur la transfor-
mation des contrats intelligents écrits en Solidity, en tenant compte du contexte BPM
dans lequel ils sont utilisés, en un réseau de Petri coloré hiérarchique. Nous expri-
mons un ensemble de vulnérabilités des contrats intelligents sous forme de formules en
logique temporelle et utilisons le vérificateur de modèles Helena pour, non seulement
détecter ces vulnérabilités tout en discernant leur exploitabilité, mais aussi vérifier
d’autres propriétés spécifiques aux contrats basées sur le temps.
L’approche que nous proposons est basée sur la vérification des modèles représentés
en CPN et comprend principalement trois phases:

1. transformer le code Solidity des contrats intelligents en sous-modèles CPN cor-
respondant à leurs fonctions.

2. transformer le contexte BPM en un modèle CPN.

3. construire un modèle CPN en référence à une propriété LTL qui peut exprimer:
(i) une vulnérabilité dans le code ou (ii) une propriété spécifique au contrat,
en le liant à un modèle CPN représentant le comportement à considérer, et en
fournissant le modèle obtenu au vérificateur de modèles pour vérifier la propriété
ciblée.
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Plus précisément, nous optons pour un modèle CPN hiérarchique pour représenter
l’exécution et l’interaction des contrats intelligents considérés dans le cadre de la
spécification du contexte BPM éventuellement fournie. Pour ce faire, nous représentons
chaque fonction d’un contrat intelligent par une transition agrégée qui encapsule
un sous-modèle correspondant au flux de travail interne de la première. En fait,
notre objectif à cette première étape est d’obtenir des blocs de construction pour le
modèle hiérarchique qui sera fourni au vérificateur de modèles. Ensuite, étant donné
une spécification de contexte (transformée en CPN) et une propriété LTL à vérifier,
le modèle CPN final est construit en (1) reliant la transition agrégée représentant
la fonction ciblée au modèle comportemental et (2) construisant une hiérarchie en
représentant explicitement les appels de fonction dans le sous-modèle en question (si
la propriété vérifiée le requiert).

Nous avons implémenté un outil graphique appelé Solidity2CPN qui met en œuvre
et automatise les différentes étapes de l’approche proposée et la rend accessible à un
plus grand nombre d’utilisateurs qui ne sont pas nécessairement familiers avec les
aspects de la vérification formelle.



Abstract

Blockchain, which was first introduced as the technology driving Bitcoin, has now out-
grown the confines of cryptocurrencies to find its way into a wide range of application
areas, including Business Process Management (BPM). Indeed, its intrinsic proper-
ties, such as its decentralized structure, capacity to give trust among untrustworthy
parties, immutability, and financial transparency, appear to provide the necessary
instruments for devising suitable solutions for current BPM issues, particularly for
collaborations. This evolution has been mainly owed to the concept of smart contracts
being introduced to Blockchains. A smart contract allows the execution of interde-
pendent transaction sequences while adhering to the rules established in it. On the
other hand, a business process may be considered as a set of activities connected by
causal relationships with the purpose of attaining a business goal. As a result, smart
contracts appear to be excellent candidates for implementing and automating BPs.

Despite significant advancements in Blockchain adoption for BPM, the technology
is still in its infancy, and deploying smart contracts to carry out BPs cannot be deemed
safe. As a result, proving the correctness of the smart contracts to be deployed on a
blockchain is critical for the integrity of the specified business processes.

In our work we propose a formal approach based on the transformation of Solidity
smart contracts, with consideration of the BPM context in which they are used, into
a Hierarchical Coloured Petri net. We express a set of smart contract vulnerabilities
as temporal logic formulae and use the Helena model checker to, not only detect such
vulnerabilities while discerning their exploitability, but also check other temporal-
based contract-specific properties.
Our proposed approach is based on model checking of CPN models and comprises
mainly three phases:

1. transforming the smart contracts’ Solidity code into CPN sub-models corre-
sponding to their functions.

2. transforming the BPM context into a CPN model

3. constructing a CPN model w.r.t an LTL property that can express: (i) a vulner-
ability in the code or (ii) a contract-specific property, linking it to a CPN model
representing the behavior to be considered, and feeding it the model checker to
verify the targeted property.

More precisely, we opt for a hierarchical CPN to represent the considered smart
contracts’ execution and interaction w.r.t the provided BPM context specification. To
do so, we represent each function of a smart contract by an aggregated transition that
encapsulates a sub-model corresponding to the internal workflow of the former. In
fact, our aim at this first step is to get building blocks for the hierarchical model that
will be fed to the model checker. Then, given a context specification (transformed
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into CPN) and an LTL property to be verified, the final CPN model is built by (1)
linking the aggregated transition representing the targeted function to the behavioral
model and (2) building a hierarchy by explicitly representing function calls in the
submodel in question (if the checked property requires it).

We have implemented a graphical tool called Solidity2CPN that automates the
different steps of the proposed approach and makes it accessible to a broader range
of users who are unfamiliar with the aspects of formal verification.
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1.1 Research context

It is not often that an emerging technology acquires an impact that goes beyond
what it had been initially intended, and yet as much can be said of the Blockchain.
Initially featured as the technology behind Bitcoin [78], Blockchain has soon after
escaped the box of cryptocurrencies to find its way into a multitude of application
domains and become an integral ingredient of our daily lives. In fact, within the
span of the two last decades, the Blockchain has known many advances that took
it from being merely a database recording transactions between parties to being a
computational platform on which small programs can be invoked as transactions.
This leap has significantly expanded the power of Blockchain systems, and increased
their reach to many application fields. This can be particularly observed in the
growing interest Blockchains are gaining as part of IT systems, in domains such as
health records, banking, voting, personal identity, etc [92]. According to healthcare
statistics [13], Blockchain is in the top-5 priorities of 40% of senior health executives,
mainly thanks to its ability to provide a seamless exchange of patient data between
healthcare facilities while maintaining its confidentiality. Additionally, 13% of senior
IT leaders expressed their intentions to integrate Blockchain into their daily business
processes, driven essentially by its prospects to lower their system maintenance costs
and raise their security levels [13]. This diversity in application fields, however, does
not take away from the importance of cryptocurrencies as in the year 2020, the market
size of the Blockchain technology was estimated at $3.7 billion [8]. The technological
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research and consulting firm, Gartner, Inc., predicts that Blockchain’s business value-
add will be over $176 billion by 2025 and will approach $3.1 trillion by 2030. Such
numbers are a clear indication of the weight of this technology in the Business world.

Currently, the Blockchain technology has witnessed the rise of three generations:
the first one as a digital currency, the second as a digital economy, and the third
as a digital society [44]. Conceptually, a Blockchain is a distributed ledger that
keeps records of transactions happening among a network of participants. A con-
sensus mechanism is used to confirm valid transactions and reject fraudulent ones.
Once a transaction is confirmed and added to a record in the Blockchain, it is no
longer possible to alter nor delete it. This definition gives the basic idea of a first-
generation Blockchain which focuses solely on cryptocurrencies transfer. The emer-
gence of second-generation Blockchains occurred when the distributed ledgers were
embedded by so-called smart contracts that enable them to function as distributed
computing platforms. Blockchain was then able to support new economic and finan-
cial applications beyond simple payments (e.g., traditional banking and legal services
like loans, stocks, contracts, monetized assets, etc). The transition to third-generation
Blockchains was only a matter of time as it became clear that what the concept of
smart contracts brought to this technology could take its applications beyond any
economic activity and into a variety of fields including art, health, science, identity,
governance, etc [44]. As a matter of fact, the Blockchain technology is regarded as the
second-most important innovation, behind the internet. If the latter could be used
to establish online business processes by connecting people, the former resolves the
trust problems using peer-to-peer networking and public-key cryptography.

One of the most interesting applications of the Blockchain technology is the do-
main of Business Process Management (BPM) [70]. The concept of Business processes
(BPs) emerged in the early 20th century and has been evolving ever since. By the early
1990s, researchers were already talking about Business Process Management (BPM)
as a discipline that reigns upon enterprises seeking both effectiveness and efficiency
and striving for innovation and flexibility especially within the world of IT. Many def-
initions have been proposed to clearly determine the meaning of this discipline and its
boundaries. According to [30,35,100], BPM is a discipline that encompasses all types
of modeling, automation, execution, control, measurement, and optimization of busi-
ness activity flows in support of organizational goals, spanning systems, personnel,
clients, and partners both inside and outside the enterprise. This discipline is there-
fore centered around these Business activity flows which are commonly referred to as
Business Processes. A Blockchain platform can indeed provide a reliable execution
of Business processes even within a trustless network, especially thanks to the con-
cept of smart contracts. In fact, its inherent characteristics, namely its decentralized
nature, ability to provide trust among trustless parties, immutability and financial
transparency seem to put on the table the right tools to contrive adequate solu-
tions for existing problems in the BPM research field, especially (but not exclusively)
when it comes to collaborations [71]. One of the promising integration possibilities
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of these two fields is the design of Blockchain-based business processes. So far, the
general preference has been to use an existing modeling language for BPs and adopt
Blockchain for different aspects of their management. For instance, Lorikeet [96] is
a tool that leverages Blockchain as a message exchange mechanism for BP chore-
ographies. Caterpillar [63], on the other hand, is used to implement the BP model
and deploy it on the chain. This has been possible thanks to the concept of smart
contracts introduced by Ethereum, which allow the execution of sequences of inter-
dependent transactions while complying to the rules implemented within. In general,
a BP can be analogously viewed as a sequence of tasks linked by causal relationships
with the aim of achieving a particular business goal. Therefore, smart contracts seem
to be ideal candidates for the implementation and automation of business processes.
Moreover, the intended behaviour of smart contracts can intuitively be represented
using a business process representation that would characterize the context in which
the smart contracts are supposed to be executed. Such a behavioural context can
either come directly as a description of a business model or be derived from a script
that would be used to invoke the smart contracts. In fact, smart contracts are pieces
of code that act like autonomous software agents, used to enforce management rules
on the execution of transactions on the Blockchain. They are stored on and executed
by the Blockchain and therefore inherit its characteristics, particularly its immutabil-
ity. This same feature can, however, turn into a weak spot for such contracts. In fact,
as a smart contract cannot be altered once it has been deployed on the Blockchain,
it cannot be corrected either, which makes verifying its correctness prior to its de-
ployment an indispensable necessity. Furthermore, the correctness verification is an
important aspect for the design of Blockchain-based BPs. The assessment of such
processes involves both requirements validation and consistency.

In light of this context, the ultimate goal of this thesis is to provide a solution that
would aid smart contract designers, especially (but not exclusively) those involved in
the BPM world, to correctly design and implement their contracts. This includes
helping them avoid well-known vulnerabilities that may threaten the security of their
smart contracts (and therefore their Blockchain-based applications), as well as pro-
viding the necessary support to define their own correctness criteria and make sure
their smart contracts shall abide by them.

1.2 Motivation and problem statement

Blockchain is still considered an evolving technology whose extent has not been fully
revealed. Working towards new ways of exploiting it, though can lead to valuable
exploits, is undoubtedly a risky endeavor. In fact, despite the advance in the adoption
of Blockchain for the BPM context, its state is still nascent, and using smart contracts
to carry on BPs cannot be considered safe. Many attacks with significant consequences
on several Blockchain platforms, exploiting hidden vulnerabilities in deployed smart
contracts and exposing the defectiveness of the targeted applications bear witness to
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such a risk. The first dangerous attack on a Blockchain can be traced back to August
2010, when 92 billion BTC were generated out of thin air by exploiting an integer
overflow vulnerability in the Bitcoin Blockchain [9], which resulted in cancelling all
relevant transactions and rolling back the Blockchain to a previous state. The DAO (a
Decentralized Autonomous Organization built upon Ethereum) attack in June 2016,
caused by a reentrancy vulnerability, is one of the most infamous attacks Ethereum
has ever had to suffer [91]. On top of the tangible loss that evaluated to 3.6M of
stolen ether (around 55M USD at the time) the attack resulted in a hard fork in the
Ethereum Blockchain which could have easily resulted in a community fallout, the
worst possible nightmare for Ethereum. The Parity multisig wallet has been subject
to two substantial attacks. The first happened in July 2017 when more than 150K
ETH were stolen (32M USD). The attacker used a vulnerability in the code (a bad
practice) that allowed him to change the ownership of an important contract and take
possession of its ether. The second attack which happened in November 2017, and
which was more of an unintentional accident caused by a self-destruct vulnerability,
did not result in stolen funds but caused 513K ETH to be locked in the attacked
contracts (160M USD) [93]. The damages were obviously serious, so much as to push
Blockchain foundations to propose bug bounty programs [3, 10] offering rewards for
uncovering vulnerabilities.

From an academic point of view, numerous methods and tools have therefore
emerged to both support the development of secure smart contracts and aid the anal-
ysis of already deployed ones. This panoply of studies comprises approaches that
use non-formal techniques to detect bugs in certain execution scenarios, as well as
approaches based on formal techniques and aim for an automatic formal verification
of smart contracts. While informal techniques can test a certain requirement under
certain scenarios, they cannot prove the correctness of a smart contract in general
(e.g., absence of integer overflow vulnerabilities, deadlock-freedom). That’s why re-
searchers turned to formal verification which has proved to be efficient to reach such
correctness goals [48].

We note that in our research work, we are interested in Ethereum smart contracts
as it is currently the second largest cryptocurrency platform after Bitcoin besides
being the inaugurator of smart contracts, and more particularly those written in
Solidity [12] as it is the most popular language used by Ethereum. We also note that
while Ethereum allows smart contracts to be written in a ‘Turing complete’ language
that facilitates semantically richer applications than Bitcoin which allows very simple
forms of smart contracts, the former also enlarges the threat surface, as evidenced by
the many high-profile attacks.

As will be detailed later in Chapter 3, many studies have proposed formal ap-
proaches for the verification of Solidity smart contracts. The majority of these propo-
sitions, however, aim to detect some of the well-known vulnerabilities of Solidity, with
only a minority giving the possibility to check for some other predefined properties
and none allowing the specification of user-defined properties. Not only is the de-
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tection of a number of vulnerabilities not enough to decide the correctness of smart
contracts in general, but also the possibility of defining contract-specific properties
can come very handy especially if the users have a specification of the behavioural
context in which they intend to use their smart contracts. Moreover, no studies have
yet treated the verification of smart contracts used in the context of BPM despite the
growing use of Blockchain in this discipline.

The work presented in this PhD thesis is motivated by the previously described
challenges and shortcomings, and aims to tackle the following research issue: the
formal verification of Solidity smart contracts in a BPM context. To address this
research problem, we need to answer the following main research questions:

• RQ1: How to verify Solidity smart contracts in general?

• RQ2: How to describe the behaviour of Solidity smart contracts using a BP
context specification?

• RQ3: How to verify Solidity smart contracts with a BP context specification?

To better clarify the problems that we will be dealing with in this PhD work, we
furthermore define other questions that derive from the previous ones:

• RQ4: How to homogenize a behavioural context specification with that of
Solidity smart contracts

• RQ5: What vulnerabilities can hinder the correct execution of Solidity smart
contracts and how to detect them?

• RQ6: What kind of properties need to be verified to ensure the correctness of
Solidity smart contracts used in a BPM context?

1.3 Objectives and contributions

In view of the previously described challenges and shortcomings, the main objectives
of this PhD thesis can be summarized as follows:

• Obj1: provide a formal model for Solidity smart contracts

• Obj2: provide formal models for possible behavioural contexts that may ac-
company the smart contracts

• Obj3: formally define well-known vulnerabilities

• Obj4: provide a full approach to formally verify smart contracts while support-
ing the possibility of behavioural context specifications
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In this PhD thesis, we propose a formal approach for the verification of Solidity
smart contracts with a particular focus on those used in the BPM context. Herein we
give a global overview of this approach that combines our contributions that will be
detailed in Chapters 4-7, and whose technical elements will be explained in Chapter 2.

Our approach is based on model checking as a formal verification method applied
on Coloured Petri Net as a representation formalism and using Linear Temporal Logic
to express the properties to be verified. In fact, model checking is technique whose
goal is to check the satisfaction of some properties expressed in a formal logic in a
system specified as some sort of finite-stat model. We choose to use this technique
on Coloured Petri Nets (CPNs) [55]. Thanks to their ability to combine the analysis
power of Petri nets with the expressive power of programming languages, CPNs are
suitable candidates for the modeling and verification of large and complex systems,
and therefore they are employed in our approach to model the smart contracts exe-
cution with respect to a behavioral context specification defining the workflow within
which they are used. In layman’s terms, we use the CPN formalism to represent
Solidity smart contracts and behavioural context specifications, and we leverage the
model checking method to see if properties defined on these contracts actually hold.

To explain our approach in more detail, we depict its different stages in Figure 1.1.
This approach comprises mainly five steps:

1. transformation of the smart contracts’ Solidity code into CPN sub-models cor-
responding to their functions. This step comes as a contribution to achieve
Obj1 which is part of the response to RQ1 .

2. transformation of the behavioural context specification into a CPN model. This
step comes as a contribution to achieve Obj2 which is part of the response to
RQ2 and RQ4 .

3. expression of the property to be verified in LTL. This step comes as a contribu-
tion to achieve Obj3 which is part of the response to RQ5 and RQ6 .

4. generation of a Hierarchichal CPN (HCPN) model. This step comes as a con-
tribution to achieve Obj4 which is part of the response to RQ3 and RQ4 .

5. model checking of the generated HCPN model w.r.t to the specified LTL prop-
erty. This is the final step that puts together all the pieces of the approach to
achieve our final goal.
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1.5 Thesis outline

The remainder of this PhD thesis manuscript will be organized as follows:

• Chapter 2: Preliminaries introduces the basic concepts related to our re-
search and needed to understand the details of the work. In this chapter, we first
present the technology of Blockchain, with a focus on the Ethereum platform
and its main smart contracts language Solidity. Then, we introduce both imper-
ative and declarative approaches for the representation of Business Processes.
Finally, we shift the focus onto the formal methods and models leveraged in our
work, namely model checking as a formal verification technique, Coloured Petri
Net as a representation formalism and Linear Temporal Logic as a means for
the expression of properties to be verified.

• Chapter 3: State of The Art provides an exploration and a thorough analysis
of the state of the art around the problematic of our research work. Herein
we mainly focus on studies related to the formal verification of Solidity smart
contracts. We then give an overview of the application of formal methods for
the verification of different aspects of Business process models.

• Chapter 4: Formal Modeling of Solidity Smart Contracts presents our
approach to formally model Solidity smart contracts using Coloured Petri Net
as a representation formalism.

• Chapter 5: Formal Modeling of Behavioural Contexts introduces our
approach to formally represent two kinds of contexts that can be used for the
description of the behaviour of smart contracts. We start by the formalization
of the free context which is used when no restrictions are provided for the
execution of such contracts. Then we give a formalization for a constrained
context which is used when some restrictions are provided for the execution of
the smart contracts.

• Chapter 6: Expression of Properties to be Verified using Linear Tem-
poral Logic details our approach to formalize six of the most common vulner-
abilities in Solidity using LTL and explains how this logic can also be used for
the specification of contract-specific properties.
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• Chapter 7: Application and Implementation of our Approach illus-
trates how the contributions presented in the three previous chapters are put
together to bring forth and end-to-end tool for the formal verification of smart
contracts with a behavioural context specification.

• Chapter 8: Conclusion and Future Work summarizes the proposed con-
tributions and presents an outlook on the potential perspectives that we intend
to tackle in the short-medium term.
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2.1 Introduction

This chapter introduces the main concepts and background required for the under-
standing of the contributions described in the remainder of this manuscript. We
start by introducing the Blockchain technology in Section 2.2, with a focus on the
Ethereum platform and Solidity as a smart contracts implementation language. Then,
in Section 2.3 we discuss both the imperative and declarative paradigms for Business
process modeling while focusing on Dynamic Condition Response (DCR) Graphs as
a representation for BPs. Finally, Section 2.4 comes to introduce the formal methods
and models that will be used throughout our proposed contributions, namely model
checking, Coloured Petri Net and Linear Temporal Logic.
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2.2 Blockchain Technology

The idea for the first decentralized Blockchain goes back to 2008 when Satoshi
Nakamoto proposed a design for a peer-to-peer electronic cash network that would
solve the problem of double-spending without the need for a trusted third-party. This
network timestamps transactions by hashing them into an ongoing chain of hash-
based proof-of-work, forming a record that cannot be changed without redoing the
proof-of-work. This idea was then put into use as fundamental part of the Bitcoin
cryptocurrency where it serves as the network’s main public ledger for all transac-
tions [78]. Numerous applications have emerged since the advent of Bitcoin, all of
which aim to make use of the capabilities and principles of the public ledger technol-
ogy. As a result, a considerable number of Blockchain platforms have emerged over
the course of history.

2.2.1 The Ethereum Platform

Co-founder of Bitcoin Magazine in 2011, Vitalik Buterin was among the many engi-
neers who believed that Bitcoin had not yet fully used the potential of the Blockchain
technology. He began developing what he thought would be a flexible Blockchain that
could serve a variety of purposes in addition to serving as a peer-to-peer network. A
crucial turning point in the history of the Blockchain came when Ethereum [2] was
introduced as a brand-new public Blockchain in 2013 with more features than Bit-
coin. Buterin was able to position Ethereum in a different league from its predecessor
Bitcoin by introducing two main additions: the possibility to keep track of assets
other than cryptocurrencies, and the renowned concept of smart contracts. These
new features were what allowed Ethereum’s capabilities to go beyond those of a cryp-
tocurrency to those of a platform for the development of decentralised applications.
The Ethereum Blockchain, which was formally introduced in 2015, ended up being
one of the most significant uses of Blockchain technology thanks to its smart contracts
that can be used for a variety of tasks. The Blockchain technology for Ethereum has
also been successful in attracting a vibrant developer community, which has helped
it build a real ecosystem. The Ethereum Blockchain conducts the most daily trans-
actions and its market cap has also notably grown [1].

2.2.2 Solidity Smart Contracts

Smart contracts take the famous saying “code is law” into a new perspective where
law becomes code. They can be seen as the equivalent of contracts written on paper,
where the agreed upon terms are transcribed in lines of code. The faithful execution
of a smart contract is governed and guaranteed by the laws of the Ethereum Virtual
Machine (EVM) semantics and its immutable nature gives it a sense of finality.
The most commonly-used high-level programming language for Ethereum smart con-
tracts is Solidity [14]. A Solidity smart contract is a collection of code and data,
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residing at a specific address on the Ethereum Blockchain, which can be invoked ei-
ther by an internal account (i.e., a smart contract) or directly by an external account
(i.e., user). Every account is characterized by a persistent storage (null in case of an
external account) and a balance in Ether which is adjusted by transactions. A trans-
action is message used to send ether from one account to another and/or invoke a
smart contract’s function if the message includes a payload and the targeted account
is an internal one. The execution of such a payload is carried out according to a stack
machine called the EVM. Every smart contract features a memory which is cleared
at each message call, and it can access certain properties of the current block (e.g.,
number, timestamp...). Besides the storage, stack and memory, Ethereum has an ex-
ternally accessible indexed data structure that can be used by Solidity to implement
events and acts as a log.

A Solidity smart contract may look like a JavaScript or C program syntax-wise,
but they are actually dissimilar since the underlying semantics of Solidity functions
differently from traditional programs. This naturally calls on more vigilance from the
programmers who might be faced by unconventional security issues as vulnerabilities
in smart contracts seem to often stem from this gap between the semantics of Solidity
and the intentions of the programmer [24].

Solidity Smart Contract Example - Blind Auction

We consider the following example which we adapted from [12].

Participants in a blind auction have a bidding window during which they can place
their bids. A participant can place more than one bid (function bid in Listing 2.1 -
Lines 17 to 19) and the placed bid is blinded. The bidder has to make a deposit with
the blinded bid, with a value that is supposedly greater than the real bid. Once the
bidding window is closed, the revealing window is opened. Participants proceed to
reveal their bids (function reveal in Listing 2.1 - Lines 20 to 30) by sending the actual
values of the bids along with the used keys. The system verifies whether the sent
values correspond with the placed blinded bids and potentially updates the highest
bid and bidder’s values. If the revealed value of a bid does not correspond with its
blinded value, or is greater than the deposit, the said bid is considered invalid. Once
the revealing window is closed, participants can proceed to withdraw their deposits
(function withdraw in Listing 2.1 - Lines 31 to 42). A deposit made along a non-
winning, invalid or unrevealed bid is wholly restored. In case of a winning bid, the
difference between the deposit and the real bid is restored. The auction is terminated
when all participants withdraw their deposits.

1 contract BlindAuction {

2 struct Bid {

3 bytes32 blindedBid;

4 uint deposit ;}

5 uint public biddingEnd;

6 uint public revealEnd;
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7 mapping(address => Bid []) public bids;

8 address public highestBidder;

9 uint public highestBid;

10 mapping(address => uint) pendingReturns;

11 modifier onlyBefore(uint _time) {require(now <_time);_;}

12 modifier onlyAfter(uint _time) {require(now >_time);_;}

13 constructor(uint _biddingTime , uint _revealTime) public {

14 biddingEnd = now + _biddingTime;

15 revealEnd = biddingEnd + _revealTime;

16 }

17 function bid(bytes32 _blindedBid) public payable onlyBefore(

biddingEnd) {

18 bids[msg.sender ].push(Bid({ blindedBid: _blindedBid , deposit:

msg.value}));

19 }

20 function reveal(uint[] values , bytes32 [] secrets) public onlyAfter(

biddingEnd) onlyBefore(revealEnd) {

21 require (values.length == secrets.length);

22 for(uint i = 0; i < values.length && i < bids[msg.sender ].

length; i ++) {

23 var bid = bids[msg.sender ][i];

24 var (value , secret) = (values[i], secrets[i]);

25 if(bid.blindedBid == keccak256(value , secret) && bid.

deposit >= value && value > highestBid) {

26 highestBid = value;

27 highestBidder = msg.sender;

28 }

29 }

30 }

31 function withdraw () public onlyAfter

32 (revealEnd) {

33 uint amount = pendingReturns[msg.sender ];

34 if (amount > 0) {

35 if (msg.sender != highestBidder)

36 msg.sender.transfer(amount);

37 else

38 msg.sender.transfer(amount - highestBid);

39 pendingReturns [msg.sender] = 0;}}} stBid) ("");

40 pendingReturns [msg.sender] = 0;

41 }

42 }

43 }

Listing 2.1: The Blind Auction smart contract in Solidity

As we have mentioned before in Section 1.1, smart contracts bear some resem-
blance to Business processes, which stems from the fact that both can be regarded as
a set of activities or operations, executed in a certain logical order to achieve a certain
functional goal. This, in addition to the compatibility of the Blockchain’s character-
istics (e.g., immutability, decentralization, etc) with the needs in BPM, makes the
integration of these two fields a propitious idea. The next section of this manuscript
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will introduce the basics on Business Process representations, these will later on be
used as means to the modeling of behavioural contexts for smart contracts.

2.3 Business Process Model Representations

The representation of Business process models follows mainly two paradigms: an
imperative one which is considered the traditional way to represent Business process
models, and a declarative one that has been witnessing a widespread use recently [46].

Controversy arises as to whether imperative or declarative modeling approaches
are better. An empirical investigation [84] states that while imperative languages
can be considered superior in terms of comprehensibility by end-users, this fact’s
accuracy can be influenced by the experimental subjects’ familiarity with imperative
modeling languages as they are traditionally and more profusely used in business
process modeling. On the other hand, declarative modeling approaches are loosely
considered less rigid than their counterpart and therefore more suitable for rapidly
evolving business processes. This difference in flexibility emanates from the fact that
imperative models represent how a process is executed by explicitly defining its control
flow while declarative models focus on why a process is executed in such a way by
implicitly defining its control flow as a set of rules. Consequently, making changes to
an imperative model is more time-consuming and complex than altering a declarative
one, since the former would entail explicitly adding/deleting execution alternatives
(which can call into question the correctness of the model) while the latter could
be achieved by adding/deleting constraints from the model to discard/add execution
alternatives.

In our work, we do not support any claims for the supposed superiority of any
paradigm over the other, but we rather aim to exploit the best in both of them.

2.3.1 Imperative Representations

Imperative process models are also referred to as workflow models since they are a
representation of the control flow of the process. A workflow is a description of an
algorithm used to carry out a business process. As a result, it necessitates that the
modeler be fully aware of every step required to achieve the intended outcomes in each
and every scenario. A wide range of graphical process modelling languages has been
proposed over the last decades to represent a business process such as Business Pro-
cess Model and Notation (BPMN) [80], Event-Driven Process Chain (EPC) [90], Yet
Another Workflow Language (YAWL) [17], UML Activity Diagram [61], etc. Despite
their variances in expressiveness and modelling notations, they all share the com-
mon concepts of tasks, events, gateways, artifacts and resources, as well as relations
between them, such as transition flows [101].
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Business Process Model and Notation

The Business Process Model and Notation (formerly known as Business Process Mod-
elling Notation) (BPMN) was first released in 2004 by the Business Process Manage-
ment Initiative (BPMI) [80]. BPMN is a standard for business process modelling that
allows to create and document process models. It is considered as the de facto process
modelling notation that is widely used in industry. In its latest versions, BPMN has
been enhanced with executable semantics enabling the execution of the modelled pro-
cess. It provides a rich set of elements to capture different perspectives of the business
process at different levels of detail. These elements can be categorized into a core set
which contains the basic elements to model a business process and an extended set
which contains more specialized elements to specify more complex business scenar-
ios [75]. Overall, BPMN defines 50 constructs grouped into four categories: Flow
objects, Connecting objects, Swimlanes and Artifacts. Flow Objects allow to model
the control flow perspective of a business process in terms of activities, events and
gateways. An activity is the main element of a process model and describes the kind
of work that must be done. It is graphically represented as a rectangle. An event is
something that happens during the execution of a business process. There are three
main types of events: Start, Intermediate and End events. An event is graphically
represented with a circle. A gateway allows to model the splits and joins in the pro-
cess model. Three main types are used to represent different behaviours in a business
process: AND (parallel forking and synchronization), XOR (exclusive choice and
merging) and OR (inclusive choice and merging). Although there exist other more
specialized gateways in BPMN such as event-based gateway and complex gateways,
they can all be mapped to one of the three main types OR, AND or XOR. The flow
objects elements are connected through the Sequence flow element in the Connecting
objects category. They determine the order in which the activities are supposed to be
performed in a process.

In Figure 2.1, we propose a design for the blind auction system whose smart
contract was described in Section 2.2.2 (Listing 2.1) using a BPMN choreography
diagram. In this example, we chose to separate the tasks performed by the Bidder
from those performed by the Auction Holder, who in our case is the smart contract
itself, hence the use of two swimlanes. The tasks of the Bidder represent therefore calls
to the functions of the Blind Auction smart contract (e.g., the activity Place blinded
bid represents a bidder’s call to the function bid in Listing 2.1), whereas the tasks
of the Auction Holder represent the execution of these functions (e.g., the activity
Receive blinded bid represents the execution of the function bid in Listing 2.1). Start
Reveal and End Reveal are two intermediate events used to indicate the opening and
closing of the revealing window as per the description given for the Blind Auction
smart contract. The XOR split and join gateways (lozenge shapes with X inside) are
used to allow a bidder to make the exclusive choice to either reveal and then withdraw
their bid, or directly withdraw it.
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Figure 2.1: Blind Auction Workflow - BPMN Choreography

2.3.2 Declarative Representations

Imperative modeling languages for Business processes are viewed as being somewhat
strict and restrictive since they do not offer strategies for dealing with unanticipated
circumstances. New adaptive business processes have then been developed in response
to the need for more adaptable management systems [36]. This marked a paradigm
change compared to the traditionally-used modeling techniques. Declarative lan-
guages are distinguished by their ability to express “what” has to be done without
determining the specifics of “how” to do so. They therefore enable context-aware
decision-making by process participants during the execution of business processes.
Contrarily, restricting business rules are established to stop members from engag-
ing in actions that the organization forbids or deems undesirable [82]. ConDec [82]
and DecSerFlow [18] are amongst the first declarative languages proposed for process
modeling and are both supported by DECLARE [83], a prototype workflow man-
agement system. In our work, we are interested in Dynamic Condition Response
(DCR) graphs [50] as a means for business process representation as this language
was proposed to improve on the execution efficiency problems encountered in the
former languages [19].

In the following, we start by the definition of DCR graphs before giving the defi-
nition of DCR choreographies.

Dynamic Condition Response Graphs

Syntax

Definition 2.3.1. A DCR graph is a tuple G = (E,M,Act,→•, •→,→+,→%,→⋄, l)
whereM(G) =def P(E)× P(E)× P(E) is the set of all markings:



34 Preliminaries

1. E is the set of events, ranged over by e.

2. M ∈M(G) is the marking of the graph (explained below).

3. Act is the set of actions.

4. →•, •→⊆ E × E are the condition and response relations, respectively. In
general, e is a condition for e′ (e →•e′) means that e must have been executed
at least once before executing e′. Having e′ as a response for e (e•→e′) means
that e′ should be executed at least once after having executed e.

5. →+,→%⊆ E × E are the dynamic include and exclude relations, respectively,
satisfying that ∀e ∈ E . e→+∩ e→%= ∅.

6. →⋄⊂ E × E is the milestone relation.

7. l : E → Act is a labelling function mapping every event to an action.

Semantics A marking M = (Ex,Re, In) ∈ M(G) is a triplet of event sets where
Ex represents the set of events that have previously been executed, Re the set of
events that are pending responses required to be executed or excluded, and In the
set of events that are currently included. The idea conveyed by the dynamic inclu-
sion/exclusion relations is that only the currently included events are considered in
evaluating the constraints. In other words, if e is a condition for e′ (e →•e′), but is
excluded from the graph then it no longer restricts the execution of e′. Moreover, if
e′ is the response for e (e•→e′) but is excluded from the graph, then it is no longer
required to happen for the flow to be acceptable. The inclusion relation e→+ e′ (resp.
exclusion relation e→% e′) means that, whenever e is executed, e′ becomes included
in (resp. excluded from) the graph. The milestone relation is similar to the condition
relation in that it is a blocking one. The difference is that it is based on the events
in the pending response set. In other words, if e′ is a milestone of e (e′ →⋄ e), then
e cannot be executed as long as e′ is in Re.

In Figure 2.2, we propose a design for the blind auction system whose smart
contract was described in Section 2.2.2 (Listing 2.1) using a DCR graph. Visually,
such a model can be represented as a directed graph with events (boxes) as nodes and
five types of arrows for the five types of relations that can link them. This DCR graph
follows the same idea as the BPMN choreography model proposed in Figure 2.1. That
is to say, an event in our graph can either represent a call to a function from the Blind
Auction smart contract (Listing 2.1) or the execution of that function itself. Relations
are used to define which events can or have to be executed at each step of the process.
For example, initially only the Place blinded bid event can be executed (the initial
marking M0 indicates that we only have that event in the set of included events In).
The execution of the said event would include the Receive blinded bids and Reveal bids
events which have the former event as a condition. The Receive blinded bids event is
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also a milestone for the Reveal bids event, which means that at this step, only the
Receive blinded bids event can be executed. In this proposed graph, the execution of
the Reveal bids event marks the start of the revealing window by excluding the Place
blinded bid event, and the execution of the Request withdrawal marks the end of that
window by excluding the Reveal bids event.
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Figure 2.2: Blind Auction Workflow - DCR Graph

Dynamic Condition Response Choreographies

Syntax A DCR choreography [51] is a DCR graph that can be executed in a dis-
tributed way between a number of participants. An event in a DCR choreography
has an initiator and can potentially have one or more receivers. In the following, we
adapt the definition given in [51] on account of simplicity and better adequacy with
our work.

Definition 2.3.2. A DCR choreography is a couple (G,R) where R is a set of roles
and G is DCR graph whose labelling function l is instead defined as follows:

• l : E → (Act×R× P(R))

Semantics A DCR choreography has the same semantics as a DCR graph with the
added condition that only the initiator of an event can execute it. For more details
on DCR Graphs we refer the readers to [76].

An example of a distributed DCR choreography for our Blind Auction system is
given in figure 2.3. As a continuation to the previous DCR graph in Figure 2.2 and
to keep the harmony with the BPMN choreography in Figure 2.1, we keep the events
and relations of the former and introduce the participants of the latter (i.e.,Bidder
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Figure 2.3: Blind Auction Workflow - DCR choreography

and the Auction Holder) . We use the upper part of a box to indicate the initiator
of the event and the bottom part to indicate the receiver(s).

A primordial phase in the life cycle of a business process is its verification. In
order to avoid execution mishaps whose gravity may vary with the level of criticality
of the modeled system, the designer needs to make sure that the model will actually
satisfy a set of requirements/specifications that define the correctness of the system.
In the following section, we will present a basic introduction to formal methods and
models, with a focus on model checking as a verification technique and coloured Petri
net as a formal model.

2.4 Formal Methods and Models

Formal methods are methodologies to specify, develop, and verify software and hard-
ware systems that are rigorously mathematical in nature. The idea that completing
adequate mathematical analysis may, like in other engineering disciplines, contribute
to the dependability and robustness of a design is what drives the adoption of formal
techniques [53]. When it comes to formal verification, such techniques are used to
check the conformance of the developed system to a predefined specification. They
are based on formal methods of mathematics and are able to provide formal proof
of the correctness of the investigated system with reference to its formally specified
behavior. We can distinguish two main branches of formal verification methods: first,
those based on theorem proving, where a prover is used to discharge proofs on a math-
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ematically modeled system. Such approaches however cannot be fully automated, as
the user usually has to intervene to assist the prover; and second, those based on
model checking. Besides being automatable, model checking techniques can also pro-
vide counter examples which are basically execution traces that show how a property
of the modeled system is violated. This can be a valuable information for designers
especially in reassessing their model. The basic idea of model checking is to model
the system as a formal model (e.g., finite state machine), generate its state space, and
then explore it to check some specification that is supposed to define the correctness
of the system.

In this PhD thesis, we rely on model checking to verify Linear Temporal Logic
properties on coloured Petri net models.

2.4.1 Coloured Petri Nets

A Petri net [77] is a formal model with mathematics-based execution semantics. It
is a directed bipartite graph with two types of nodes: places (drawn as circles) and
transitions (drawn as rectangles). Despite its efficiency in modelling and analysing
systems, a basic Petri net falls short when the system is too complex, especially
when representation of data is required. To overcome such limitations, extensions to
basic Petri nets were proposed, equipping the tokens with colours or types and hence
allowing them to hold values. A large Petri net model can therefore be represented in
a much more compact and manageable manner using a Coloured Petri net [55]. The
formal definition of a CPN is given in Definition 2.4.1.

2.4.1.1 Syntax

Definition 2.4.1 (Coloured Petri net). A Coloured Petri Net is a nine-tuple CPN =
(P, T, A,Σ, V, C,G,E, I), where:

1. P is a finite set of places.

2. T is a finite set of transitions such that P ∩ T = ∅.

3. A ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs.

4. Σ is a finite set of non-empty colour sets.

5. V is a finite set of typed variables such that Type[v] ∈ Σ, ∀v ∈ V .

6. C : P → Σ is a colour set function that assigns a colour set to each place.

7. G : T → EXPRV , where EXPRV is the set of expressions with variables in
V , is a guard function that assigns a guard to each transition t.

8. E : A→ EXPRV is an arc expression function that assigns an arc expression
to each arc a such that Type[E(a)] = C(p)MS.



38 Preliminaries

9. I : P → EXPR∅ is an initialisation function that assigns an initialisation
expression to each place p such that Type[I(p)] = C(p)MS.

2.4.1.2 Semantics

For CPN (P, T,A,Σ, V, C,G,E, I), we note:

• A marking is a function M that maps each place into a multiset of tokens.

• The initial marking M0 is defined by M0(p) = I(p)⟨⟩ for all p ∈ P .

• The variables of a transition t are denoted by V ar(t) ⊆ V .

• A binding of a transition t is a function b that maps each variable v ∈ V ar(t)
into a value b(v) ∈ Type[v]. It is written as ⟨var1 = val1, ..., varn = valn⟩. The
set of all bindings for a transition t is denoted B(t).

• A binding element is a pair (t, b) such that t ∈ T and b ∈ B(t). The set of all
binding elements BE(t) for a transition t is defined by BE(t) = {(t, b)|b ∈ B(t)}.
The set of all binding elements in a CPN model is denoted BE.

A transition is said to be enabled if a binding of the variables appearing in the
surrounding arc inscriptions exists such that the inscription on each input arc evalu-
ates to a multiset of token colours present on the corresponding input place. Firing a
transition consists in removing (resp. adding), from each input (resp. to each output)
place, the multiset of tokens corresponding to the input (resp. output) arc inscription.
The semantics of a CPN can be represented by a graph (reachability graph) where the
initial state is the initial marking and an arc, labeled with a transition t, connects a
marking m to a marking m′ when t is firable from m and its firing leads to m′. For
more details on CPN we refer readers to [55].

CPN Example

P1 Pnt1
(x, y) (x, y, x+ y)

Couple Type Triplet Type

1‘(2, 5) + +

1‘(4, 7) + +

1‘(3, 2)

3

Figure 2.4: A simple example of a CPN model

To better explain the basic concepts of CPN, we use the simple CPN model of
Fig. 2.4. Couple Type is defined as the product of two integers and Triplet Type as
the product of three integers. x and y are two integer variables. In a CPN model, each
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place has a colour that determines the kind of data it can contain. We say that p1 is of
colour (or type) Couple Type and p2 is of colour Triplet Type. Initially, the place p1
contains three tokens with different values (three different couples). The expressions
on the arcs have to correspond to the colours of their respective places (e.g., the
expression on the outgoing arc of p1 has to conform to its colour Couple Type). In
this CPN, (x, y) can be bound to any of the tokens in p1. For example, if it is bound
to the first token (2, 5), the firing of transition t1 results in consuming that token
from p1 and producing a token with the value (2, 5, 7) in p2.

Figure 2.5 shows an example of a CPN model that could represent the previously
described blind auction system (Listing 2.1). Evidently, the transitions bid, reveal
and withdraw (in green) represent the execution of their namesake Blind Auction
smart contract functions. The transitions in the user’s behaviour box (i.e., bid Call,
bid ACK, etc) are the equivalent of the activities/events that represent the smart con-
tract’s functions invocation by the bidder in the previous BPMN and DCR examples.
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Figure 2.5: Blind Auction - CPN Model

2.4.2 Linear Temporal Logic

The approach presented in this PhD work is primarily based on model checking of
CPN models w.r.t formulae expressed in Linear Temporal Logic (LTL). This logic
was first introduced in [85] as a means to reason about concurrent programs. In
LTL, a classical timeline that starts “now” is considered, where every moment has
a unique possible future. In other words, a model of LTL is an infinite sequence of
indexed states (i = 0, 1, 2, ...) where each point in time has a unique successor. An
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LTL formula is evaluated over such a sequence of states starting from an i’th state.
It contains a finite set Prop of atomic propositions, the usual Boolean operators ¬,
∧, ∨, and →, in addition to temporal operators:

• Until (U): φ U ψ is true if ψ is true now or φ is true now and remains so until
ψ holds.

• Next (X or e): X φ is true if φ is true in the next step.

• Globally (G or □): Gφ is true if φ is true in every step.

• Future (F or ♢): F φ is true if φ is true now or in some future time step.

Definition 2.4.2 (LTL formula). An LTL formula can be inductively defined as fol-
lows:

• ∀p ∈ Prop, p is an LTL formula.

• If φ and ψ are two LTL formulae, then ¬φ, φ∧ψ, φ∨ψ, φ→ ψ, φ U ψ, X φ,
G φ and F φ are LTL formulae too.

The technique of model checking checks that a system, starting at a start state,
satisfies a specification [89].

An atomic proposition could be a state or event-based basic property. In this
work, we consider hybrid linear-time temporal logic (hybrid LTL) formulae where
both state- and event-based atomic propositions can occur. Therefore, we chose to
represent the semantics (behavior) of a system by a Labeled Kripke Structure (LKS ).

Definition 2.4.3 (Labeled Kripke Structure (LKS)). Let AP be a finite set of atomic
propositions and Act be a set of actions. An LKS over AP is a 5-tuple ⟨Γ,Act ,L,→, s0⟩
where:

• Γ is a finite set of states,

• L : Γ→ 2AP is a labeling (or interpretation) function,

• →⊆ Γ×Act × Γ is a transition relation, and

• s0 ∈ Γ is the initial state.

Given a CPN N and an initial marking m0 the reachability graph of N could be
considered as a LKS where the states are labeled with atomic propositions related
to the places and where the set of actions Act is the set of transitions.

Definition 2.4.4 (Hybrid LTL). Given a set of atomic propositions AP and a set of
actions Act, a hybrid LTL formula is defined inductively as follows:

• each member of AP ∪Act is a formula,



Formal Methods and Models 41

• if ϕ and ψ are hybrid LTL formulae, so are ¬ϕ, ϕ ∨ ψ, Xϕ and ϕUψ.

Other temporal operators, e.g. F (futur) and G (globally) can be derived as fol-
lows: Fϕ = true ∪ ϕ and Gϕ = ¬F¬ϕ.

An interpretation of a hybrid LTL formula is an infinite run w = s0s1s2 . . . (of
some LKS ), assigning to each state si a set of atomic propositions and a set of actions
that are satisfied within that state. A p ∈ AP is satisfied by a state si if it belongs to
its label (i.e. L(si)), while an action a ∈ Act is said to be satisfied within a state si if
it occurs from this state in w (i.e. (si, a, si+1) ∈→). In our case, where a single action
can occur at a time (i.e. interleaving model of concurrency), at most one action can
be assigned to a state of a run.

We write wi for the suffix of w starting from si. Moreover, we say that p ∈ si, for
p ∈ AP ∪ Act , when p is satisfied by si. The hybrid LTL semantics is then defined
inductively as follows:

• w |= p iff p ∈ s0, for p ∈ AP ∪Act ,

• w |= ϕ ∨ ψ iff w |= ϕ or w |= ψ,

• w |= ¬ϕ iff not w |= ϕ,

• w |= Xϕ iff w1 |= ϕ, and

• w |= ϕUψ iff ∃i ≥ 0 such that wi |= ψ and ∀ 0 ≤ j < i, wj |= ϕ.

An LKS K satisfies a hybrid LTL formula φ (K |= φ), iff all its runs do.

2.4.3 Model Checking

The goal of model checking is to verify that properties (specified in a temporal logic)
are satisfied w.r.t a system (represented as a finite-state model). The general idea
here is to construct the state space of the model, and to explore it in order to check
a specification that is supposed to define the correctness of the system, and poten-
tially generate counterexamples in case the specification was not met. The standard
approach to do that would be to generate all the reachable states of the system, rep-
resent them individually and then exhaustively explore the state space to check for
the specified property. The application of such a method would face a state space
explosion problem in case of complex systems which constrains its application. That’s
why other model checking approaches appeared.
BDD-based symbolic model checking (e.g., SMV [68]) presents a different way to store
the states of the system, grouping them into sets of states represented by predicates
on its state variables in the form of BDDs (Binary Decision Diagram). Such an ap-
proach reduces the size of the state space to be explored, making for a more efficient
exhaustive exploration, yet it limits the nature of the variables that can be manipu-
lated. Bounded model checking (e.g., SAT [27], SMT [94]) is another form of symbolic
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model checking that does not rely on a symbolic representation of the states of the
system, but rather on applying decision procedures on prepositional logic. Such an
approach turns the verification problem into a satisfiability problem. The goal here is
to check if there exists values that can be assigned to the variables in the formula to
be verified, so as it evaluates to false, within a certain number of exploration steps.
While this approach overcomes the state space explosion problem, it cannot be con-
sidered complete since variable assignations under which the evaluation is false could
exist beyond the considered search depth.

Complementary Techniques Symbolic model checking is often seen allied to
other techniques in order to improve its efficiency or widen its application range.
Abstractions (e.g., [22]) can be used with symbolic model checking to deal with state
space explosion in software analysis. An abstraction can be either sound, in which
case properties of the abstract specification are also properties of the original one, or
complete, in which case properties of the original specification are properties of the ab-
stract one. While a sound (resp. complete) abstraction guarantees false positive-free
(resp. false negative-free) results it cannot guarantee the absence of false negatives
(resp. false positives).
Symbolic execution (e.g., [59]) can be placed as the crossover between a formal ver-
ification technique and a testing technique for programs. Its underlying idea is to
represent input variables using symbols over which the program is symbolically exe-
cuted instead of assigning concrete values, which yields symbolic formulae instead of
concrete results. Hence, one result of the symbolic execution encompasses a set of test
cases. In such a context, SMT solvers are often used to check for the reachability of
some part of the code, which amounts to checking the satisfiability of the conjunction
of the formulae encountered on its corresponding path.

In this PhD work, we will be using the Helena model checker [45] which is based on
the automata-theoretic approach [98] for explicit model checking of LTL properties.
As described in Figure 2.6, this approach starts by translating the LTL property φ to
be verified into a Büchi automaton of its negation A¬φ, and generation of the state
space automaton AM of the input model M on the fly. The synchronized product of
the two automata is then computed and used for the an emptiness check. This test
indicates whether the synchronized product accepts an infinite word, in which case
this word is returned as a counter example. We say that φ is satisfied under M if and
only if the language of the synchronization product L(A¬φ ⊗AM ) is empty.

2.5 Conclusion

This chapter provided the background that helps position our contributions in the
three main involved research fields. In fact, it introduced Solidity, the smart con-
tracts language of Ethereum in which we are interested in this PhD work. Then,
it presented different existing representation approaches for Business process models
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LTL property φ High-level model M

LTL translation

Negated property
automaton A¬φ

On-the-fly generation of
state-space automaton AM

On-the-fly synchronized product
L(A¬φ ⊗AM ) = L(A¬φ) ∩ L(AM )

On-the-fly emptiness check

L(A¬φ ⊗AM )
?
= ∅

M |= φ or counter example

Figure 2.6: Automata-theoretic explicit LTL model checking

while particularly shedding the light on DCR representations which we will be focus-
ing on as a means for the representation of the behavioural context of smart contracts.
The last section of this chapter presented the arsenal of techniques that will be used
throughout our contributions, namely model checking as formal verification method,
Coloured Petri Net as a representation formalism and Linear Temporal Logic for the
specification of the properties to be verified for the correctness of smart contracts.
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3.1 Introduction

In this PhD thesis, we aim to provide a solution to support the formal verification of
Solidity smart contracts used in a BPM context. Therefore, in this chapter, we review
the current state of the art in order to justify our problem statement and to have a
clear position regarding the existing work. We start by identifying various studies
touching on the verification of smart contracts in Section 3.2, among which we select
a few to present in detail and compare. Then, in Section 3.3 we shift the focus onto
studies that treat the formal verification of diverse aspects of Business processes.
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3.2 On the Verification of Solidity Smart Contracts

The different attacks on the different second-generation Blockchain platforms brought
light on the various vulnerabilities that they may suffer from and acted as an effective
incentive for experts to work on finding suitable solutions to the errors that may be at
the source of such weaknesses. The efforts put into this quest took different directions
(cf. Figure 3.1). Some solutions were based on informal methods while others aimed
for more formal verification approaches.

Smart Contracts 
Verification Techniques

Informal Verification

TestingLinters

Formal Verification

Theorem Proving Model Checking

Figure 3.1: Smart Contracts verification techniques

In this section, we start by an overview of the main informal techniques used for
the verification of smart contracts and then we explore the formal techniques used for
this purpose. We try to put together an exhaustive list of approaches for the verifica-
tion of Solidity smart contracts. We resorted essentially to two sources in our quest,
namely the Google Scholar search engine and the DBLP computer science bibliogra-
phy, and used combinations of the following keywords for the search: smart contract,
formal verification, Solidity and Ethereum. We then recursively pursued the refer-
ences included in these papers’ related work citations. We came out with a plethora
of material, from which we selected 13 studies based on their relevance to the subject,
the uniqueness of the proposed approach and the number of citations. Our selection
was also guided by previous surveys that were conducted on more generic scopes. For
instance, some studies did not focus on the formal aspect of the proposed verification
approaches for Solidity smart contracts but rather on their analysis capabilities [23],
while others chose to cover more smart contract languages [43] to the detriment of
being exhaustive in their papers selection. In this section, we only explore studies
related to Solidity as it is the language considered in this PhD thesis, and focus
on verification proposals that use formal approaches, hence offering a more in-depth
analysis of the existing formal verification approaches for Solidity smart contracts.

3.2.1 Informal Verification of Solidity Smart Contracts

Informal techniques are usually associated with validation rather than verification [20].
The most common techniques that fall under this category are testing and simulation.
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In fact, one straightforward way to minimize the risk of deploying a vulnerable smart
contract is to take advantage of one of the many existing testnets which are, as their
name suggests, alternate Blockchains dedicated for testing purposes. A smart con-
tract can, for example, be run on Ropsten [11] before its deployment on the mainnet,
which may help with plain defects but not with imperceptible ones.
A user can also resort to security companies such as MagicBlock- chainQA [6]. Such
services are, however, both time- and money-consuming and do not guarantee in any
case a fault-free smart contract.
The Solcover testing tool [88] was developed to offer a free and automatic testing ex-
perience of smart contracts. According to the tool’s associated blog article, it “should
only be treated as another arrow in a collective quiver”, as it is unable to fully ensure
the correctness of a smart contract.
Instead of trying out scenarios that may or may not instigate erroneous behaviors,
other researchers worked on enforcing security and best practices rules through lin-
ters [15,16,28,41], which are tools that analyze the code to identify and flag program-
ming and stylistic errors or suspicious constructs.

Such informal techniques may offer the convenience of quickly checking whether
a system would meet some requirements if executed within a specific scenario (or set
of scenarios), but they cannot, however, offer any guarantees of correctness as one
cannot be expected to manually test all possible scenarios or predict them for that
matter.

3.2.2 Formal Verification of Solidity Smart Contracts

While informal methods may reduce the risk of bugs in smart contracts, relying solely
on such techniques cannot be enough to get a full insurance that a smart contract
would be correct. Formal verification techniques can overcome this weakness, though
it may come at the expense of other challenges such as scalability. Such techniques are
used to check the conformance of the developed system to a predefined specification.
They are based on formal methods of mathematics and are able to provide formal
proof of the correctness of the investigated system with reference to its formally
specified behavior. We can distinguish mainly two families of formal verification
methods, namely those based on theorem proving and those based on model checking.

3.2.2.1 Verification Approaches Based on Theorem Proving

Some researchers proposed theorem proving-based approaches for the verification of
Solidity smart contracts. The authors in [26] propose Solidity* a prototype tool,
implemented in OCaml, that allows the translation of a restricted subset of Solidity
into F*, a functional programming language for program verification. In order to
detect dangerous patterns, the user then needs to define effects in F* code which
are discharged by the F* type-checker. They also propose EVM*, a decompiler for
EVM bytecode into F*, along which they propose a model for the cost of bytecode
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operations which can be used by creating annotations for gas-related violations that
can be discharged by the F* type-checker. Using this approach requires, not only
expertise in F*, but also an understanding of the proposed translation in order to be
able to express the patterns to be checked and understand the generated typechecking
errors. Members of the Ethereum community present a prototype for verification
integrated into the Solc compiler of Solidity [4]. Their proposition leverages the
Why3 IDE, a theorem prover which can be used on the WhyML code generated by
calling Solc with specific attributes. Other partial translations of the EVM bytecode
based on assisted proofs like Coq [52] and Isabelle/HOL [21] exist. We note that none
of these approaches offer automatic verification of smart contracts.

3.2.2.2 Verification Approaches Based on Model Checking

Other researchers proposed model-checking-based approaches for the verification of
Solidity smart contracts. Table 3.1 presents a categorization of these works depending
on the used techniques.

Table 3.1: Smart contracts verification approaches categorized by the used methods

Approaches based on
Theorem Proving

Approaches based on Model
Checking-related techniques

Symbolic Execution Abstraction SAT/SMT solvers Model Checking

[26] [4] [79] [95] [64] [97] [31] [79] [95] [64] [66, 67]
[52] [21] [103] [34] [103] [34] [57]

Oyente [64] was the first attempt at formal smart contract verification. It uses
symbolic execution applied at the EVM bytecode of the contract to generate sym-
bolic execution traces among which it looks for certain conditions that translate the
presence of one of the four vulnerabilities it targets. This proposition actually paved
the way for other researchers who wanted to do better in several subsequent studies.
Some of them reused it as part of their own tools, like in GASPER [34] which exploits
the by-product of Oyente (CFG) in its detection of costly bytecode patterns in terms
of gas consumption. Other researchers opted for extending Oyente to detect differ-
ent/additional bugs (e.g., MAIAN [79], SASC [103] and Osiris [95]). Securify [97]
is a security analysis tool for Solidity smart contracts. It starts by decompiling the
EVM bytecode into a static-single assignment form and symbolically encoding the
corresponding dependence graph in stratified DataLog, leverages the Soufflé solver
to derive semantic facts on the contract’s data- and control-flow dependencies using
declarative inference rules and then checks for the presence of predefined patterns
that correspond to the properties the user wants to verify. In fact, the authors use a
designated DSL to define compliance (resp. violation) patterns for a number of prop-
erties to capture sufficient conditions in a given code to satisfy (resp. violate) such
properties. Even though the user can define other patterns to check for additional
security properties, it is not possible to define patterns that match a contract-specific
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property, or arithmetic properties. Besides, in some cases the code does not match
any defined pattern and cannot decide on the safety of the contract. Vandal [31]
follows the same spirit and adopts a logic-driven program analysis approach. It starts
by translating the EVM bytecode into an abstract register transfer language expos-
ing its data- and control-flow structures. This language is then translated into logic
relations which are then fed to security analyses written in Soufflé to detect certain
vulnerabilities in the contract.

3.2.3 A Selection of Prominent Tools for the Formal Verification of
Solidity Smart Contracts

Among the studies that we have collected on formal verification of Solidity smart
contracts, four can be categorized as theorem proving-based approaches and 9 make
use of model checking-related techniques. We note that, despite this second category
representing a majority, only one work proposed an approach fully based on model
checking in the proper sense of the word (cf. Table 3.1). Such propositions are
rather walking the line between being formal verification-based and testing-based
approaches.

In the following subsections, we present four selected approaches proposed for
formal verification of smart contracts, presented in bold in Table 3.1. We choose to
detail the two approaches presented in [64] and [57], the two approaches with the
most cited papers, as well as [66, 67] for being the single approach based on model
checking. We also single out the approach in [95] as one of the propositions based on
the veteran Oyente [64].

Throughout the rest of this section we will be using the illustrative contracts in
Listings 3.1 and 6.2 to test the different tools proposed in the selected studies. We
note that these contracts are written for illustration and do not exhibit a logical
functionality.

1 contract VulnContract {

2 mapping (address=>uint) balances;

3 uint256 result;

4 event started ();

5 function Deposit () {

6 balances[msg.sender] += msg.value;

7 }

8 function Withdraw(uint amount) {

9 if(balances[msg.sender] >= amount) {

10 msg.sender.call.value(amount);

11 balances[msg.sender] -= amount;

12 }

13 }

14 function Multiply(uint8 x, uint8 y) returns (uint8) {return x * y;}

15 function NewYear (){

16 if(block.timestamp > 1609459199)

17 emit started ();}
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18 function CostlyLoop(uint256 x) {

19 for(uint256 i = 0; i < x; i++)

20 result += i;

21 }

22 }

Listing 3.1: A vulnerable smart contract in Solidity

contract MaliciousContract {

uint balance;

VulnContract vc = VulnContract (0 xbf0061dc ...);

function ReentrancyAttack () {

balance = msg.value;

vc.Deposit.value(balance)();

vc.Withdraw .( balance);

}

function () payable {

vc.Withdraw .( balance);

}

}

Listing 3.2: A malicious smart contract in Solidity

3.2.3.1 FSolidM and VeriSolid

Approach In [66] the authors propose an FSM-based approach for the design of
secure smart contracts. The premise of their work is that writing smart contracts in
a language such as Solidity is error-prone because the smart contract writer may not
fully grasp the semantics driving the execution process which often leads to a contract
that does not reflect the actual intentions of its creator. They hence aim at closing
this semantic gap by developing the FSolidM tool which allows users to design a smart
contract as an FSM (Finite State Machine) which is then automatically transformed
into a Solidity smart contract. To do so, they propose a definition of a smart contract
as an FSM and outline the transformation process that generates the corresponding
Solidity smart contract.

To improve the generated smart contract’s security, the authors propose so called
“plugins” that prevent some common vulnerability patterns [24]. These plugins ac-
tually translate into modifiers appended to the contract’s functions to be secured. In
Solidity, a modifier is used to change the behavior of the functions with which it is
associated. In this context, modifiers are used to implement security patterns into
the generated Solidity functions, e.g., by adding preconditions to check prior to their
execution.

The work presented in [66] was in fact laying ground for the next paper [67] in
which the authors present VeriSolid, the improved version of FSolidM. In fact, [67]
extends [66] in that it adds formal operational semantics to the formerly proposed
FSolidM model and therefore extends the Solidity code generator. This upgrade
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introduces the aspect of formal verification into the tool, which provides the user with
the ability to specify intended behavior in the form of liveness, deadlock freedom and
safety properties. It offers customizable templates to express and check some CTL
properties by a backend symbolic model checker.

Tool The FSolidM tool offers four plugins to deal with four types of vulnerabilities:
(1) a locking plugin against the reentrancy attack pattern, (2) a transition counter
plugin to enforce transition ordering and avoid falling into unpredictable states, (3) an
automatic timed transitions plugin to implement time-constraint patterns and (4) an
access control plugin to manage authorization for the execution of certain functions.

While VeriSolid extends FSolidM, it does not take into account the same vulner-
abilities as the latter since it offers the possibility to express CTL properties through
templates such as “transition b will eventually happen after transition a” which can
be used to check for a denial-of-service vulnerability. Additionally, the authors chose
to deal with the reentrancy vulnerability intrinsically by automatically introducing
an In-Transition state into which the system goes at the beginning of each transition,
thus prohibiting any overlapping calls.

In order to incorporate the formal verification aspect, the authors resort to using
the NuXmv symbolic model checker [33] which features SMT-based techniques for the
verification of infinite state systems. For that, they opt for augmenting the initial FSM
model to take in the semantics of the Solidity functions’ statements, transforming
the resulting augmented model into a BIP (Behavior-Interaction-Priority) transition
system [25] (which is guaranteed to be deadlock-free), using an existing BIP2NuSmv
transformation tool and feeding the result to the NuXmv model checker along with the
CTL formulae following the provided properties templates. For lack of an underlying

Figure 3.2: Screenshot of the VeriSolid tool - 1

business logic in our example in Listing 3.1, we choose to test the tool on a small
example for reentrancy. We note that in this model we distinguish the first call
to deposit (InitialDeposit) from the rest to get around a modeling restriction that
requires the system to contain a minimum of 2 states.

1 contract VulnerableContract {

2 uint private creationTime = now;

3 enum States {InTransition , S1, S2}

4 States private state = States.S1;

5 mapping (address=>uint) balances;
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6 function Deposit () public {

7 require(state == States.S2);

8 state = States.InTransition;

9 balances[msg.sender] += msg.value;

10 state = States.S2;}

11 function InitialDeposit () public {

12 require(state == States.S1);

13 state = States.InTransition;

14 balances[msg.sender] += msg.value;

15 state = States.S2;}

16 function Withdraw (uint amount) public {

17 require(state == States.S2);

18 require(balances[msg.sender] >= amount);

19 state = States.InTransition;

20 msg.sender.call.value(amount);

21 balances[msg.sender] -= amount;

22 state = States.S2;}}

Listing 3.3: Solidity code generated by VeriSolid

Figure 3.2 shows the model we proposed and Listing 3.3 the generated Solidity code.
We tested this code and confirmed its insusceptibility to reentrancy. Figure 3.3 shows
the representation using VeriSolid of the property stating that the function Withdraw
can only be called after the InitialDeposit function had been called, along with its
verification result.

Figure 3.3: Screenshot of the VeriSolid tool - 2

Discussion In the attempt to integrate the formal verification aspect into the ap-
proach, the first premise of closing the semantic gap of Solidity got disregarded since
the statements constituting the functions’ bodies need to be provided by the user in
Solidity. On the practical side, it may feel counter-intuitive and even restrictive for
the user to have to think about the smart contracts they want to write in terms of
states at design time, only to find themselves writing the code themselves nonethe-
less. Moreover, despite the help that may come with the proposed templates for CTL
properties for some users, they might as well be seen as an unnecessary restriction to
some other more experienced users who would like to verify more complicated prop-
erties that cannot be expressed within the limits of the provided templates. As much
as some guidance is appreciated, it should not turn into a barrier to expressivity.
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Last but not least, it is important to mention that the models in both FSolidM and
VeriSolid do not take into account any variables. Therefore, no properties on the
evolution of the values of the variables during the execution of the smart contract can
be verified, which also cuts back considerably on the range of properties the user can
check.

3.2.3.2 ZEUS

Approach Zeus [57] is a framework based on symbolic model checking for the ver-
ification of smart contracts. It takes as input a smart contract written in a high-level
language along with a so-called policy that contains the criteria to be checked and
which the user needs to specify in an XACML-styled template. The input smart
contract code is then instrumented with assertion instructions according to its cor-
responding policy by means of static analysis and is passed on to a translator that
the authors had devised to convert it into a low-level intermediate representation
(LLVM bitcode) which is then fed to an existing verification engine in order to assert
the safety of the smart contract. This is based on the primary description of the
approach. As more details are later presented in the paper, we realize that this is
not actually the exact right ordering of steps since the static analysis is afterwards
said to be performed on top of the intermediate representation rather than the high-
level code and the same goes for the added assertions. Later on, we also realize that
the high-to-low level transformation is not straightforward. The authors propose an
abstract language into which Solidity code is transformed before undergoing the first
transformation into LLVM bitcode.

As to the considered properties, the authors distinguish two main families of
vulnerable smart contracts: incorrect and unfair smart contracts. They define cor-
rectness as the adherence to safe programming practices and fairness as the adherence
to agreed upon higher-level business logic.
An incorrect smart contract can have one of the following vulnerabilities: (1) reen-
trancy, (2) unchecked sends, (3) failed sends, (4) integer overflow/underflow or (5)
transaction state dependence.
An unfair smart contract can have one of the following vulnerabilities: (1) absence of
logic, (2) incorrect logic or be (3) logically correct but unfair.
Besides vulnerabilities that fall under these two categories, two more vulnerabilities
which can actually be caused by the miner’s influence are introduced: (1) block state
dependence (BSD) and (2) transaction order dependence (TOD).

Tool Zeus was not made available online, but the authors state that they have
implemented a prototype in C++. The tool’s main components are the policy builder
and the Solidity-to-LLVM bitcode translator. For the former, they leverage the AST
output produced by the Solc compiler and taint analysis on the source code to extract
the information needed to assist the user in forming the conditions to verify. As for
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the translator, it takes as input the smart contract and uses existing LLVM APIs to
generate the bitcode, which will then be instrumented by adding assertions according
to the built policy. As a backend verifier, they opt for Seahorn [49].

Discussion Proposing an abstract interpretation language for Solidity to go through
before obtaining an LLVM bitcode contributes in improving the scalability of Zeus.
In fact, using over-approximations and reducing functions into summaries and loops
into data domains results in a reduced state space for the symbolic model checker to
be used later. However, a formal reasoning still needs to be established to prove the
actual semantic equivalence between the two languages (Solidity and the proposed
abstract language). Furthermore, the authors mention that using the abstract lan-
guage allows the support of multiple Blockchain platforms, yet we think that using
this bridge language constrains the high-level languages the tool can support. To
integrate a language other than Solidity, new correspondences with the proposed ab-
stract language would have to be defined (if not the whole language), the translation
into LLVM would have to be revised and the automation of the assertions insertions
would have to be reimplemented.

Leveraging the use of the LLVM bitcode extends the reach of Zeus in the sense
that it can make use of any backend symbolic model checker supporting that standard.
Seahorn [49] is the first choice of the authors but not the only one. It was chosen for
its ability to generate verification conditions using CHCs (Constrained Horn Clauses)
over LLVM bitcode. Other symbolic model checkers can be used, such as SMACK [87],
but that may require some modifications on the LLVM bitcode as for example some
model checkers might use different lengths for the same type which needs to be taken
into account when switching the verifier. The authors state that CHCs are suitable
for the representation of verification conditions, but do not elaborate. We think that
the tool may be able to verify a wider range of properties if it were to support the
representation of properties using other logics besides CHC.

Another point to mention is that Zeus can only account for parameters that can
be computed at the source code level and hence cannot verify properties relating to
parameters as gas consumption.

3.2.3.3 OYENTE

Approach Besides the smart contracts analysis tool they call Oyente, the authors
of [64] also propose refinements/recommendations to Ethereum’s protocol in the form
of improvements to its operational semantics (e.g., new rules for transactions execu-
tion) in order to fix certain security problems. In this survey, we are only interested
in the Oyente tool that they propose as a “pre-deployment mitigation”. It is based
upon symbolic execution and it functions over the contract’s bytecode which needs to
be provided as input along with Ethereum’s global state. The latter would serve as an
initialization for the contract’s variables. Message call-related variables are however
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treated as input symbolic values. The general idea behind Oyente is to symbolically
explore a control flow graph corresponding to the contract’s bytecode by symbolically
executing instructions within states of that graph and using a symbolic constraint
solver to decide on the feasibility of branching conditions. The possible presence of
certain vulnerabilities is detected by checking for specific conditions in the generated
symbolic traces.

This tool targets four specific vulnerabilities: (1) TOD, (2) timestamp dependence,
(3) mishandled exceptions and (4) reentrancy.

Oyente signals whether the contract in question has one of the aforementioned
problems and provides an example of a symbolic path to illustrate the possible prob-
lem to the user. The authors hope to turn Oyente into an interactive debugger as
future work.

Tool Oyente [64] is implemented in Python, uses Z3 [74] as a backend SMT solver
and detects the four discussed problems (see 3.2.3.3). Its design has four main com-
ponents:

• CFGBuilder: it outputs a Control Flow Graph of the bytecode. This graph is
only partly constructed statically as some edges are later added after symbolic
execution.

• Explorer: this is mainly an interpreter loop that symbolically executes one in-
struction at one state at a time, starting from the entry node of the CFG gener-
ated by the previous component. The Explorer actually simulates the behaviour
of EVM instructions and makes use of Z3 to decide on path conditions. The
loop ends when no more unexplored states exist or when a timeout is reached.
The CFG is potentially enriched by the end of this phase and a set of symbolic
traces is outputted.

• CoreAnalysis: it in turn comprises four components to detect the four previously
introduced bugs. These components work by checking specific conditions when
analyzing the symbolic traces resulting from the Explorer in order to flag the
possible presence of the corresponding bugs.

• Validator: this step is added to further reduce the rate of false positives. The
user, however, still needs to intervene to confirm that the flagged bugs are a
real threat.

The tool has been in active development up until May 2018, and some unreported
features were added to the updated version. Mainly, in its latest version, Oyente
can supposedly detect the following issues (in addition to the previously mentioned
issues): (1) integer overflow/underflow, (2) Parity Multisig bug 2 and (3) callstack
depth attack.
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Tested on our example in Listing 3.1, the paper’s version of Oyente was able to
detect the timestamp dependency and the reentrancy vulnerabilities, as shown in the
truncated results in Figure 3.4.

Figure 3.4: Screenshot of the Oyente tool

Discussion Oyente can be seen as the first attempt at formal smart contract veri-
fication, which paved the way for researchers in several subsequent propositions.

Despite its ability to detect important vulnerabilities in smart contracts, Oyente
is not a complete verifier. Its major drawback is that its reported errors may be
spurious. In other words, its results may contain false positives. One example for
that is flagging a false reentrancy vulnerability in a code that uses a send function,
which should not pose a threat unless its default gas were altered. This can actually
be explained by the fact that Oyente relies on the bytecode of the smart contract, in
which both functions send and call are mapped to the same CALL bytecode, which
translates into contextual information loss. To detect reentrancy, the tool checks the
path condition before each CALL it comes across and checks if it still holds after the
bytecode’s execution, in which case it is registered as a vulnerability.

3.2.3.4 OSIRIS

Approach Like in the previous study, in addition to proposing a verification ap-
proach, the authors in [95] indicate some ways to protect smart contracts against
certain attacks by introducing modification to the EVM semantics as well as the
Solidity compiler. We are only interested in their main contribution which is the
proposed verification framework. This work specifically targets integer vulnerabilities
in Solidity smart contracts. More precisely, the authors investigate the presence of
3 types of bugs in such contracts: (1) arithmetic bugs like integer underflows/over-
flows and bugs caused by divisions where the denominator is zero, (2) truncation
bugs which can happen when converting a value into a new type with a shorter range
than that of its initial type and (3) signedness bugs that can occur when converting
a signed integer typed value into an unsigned integer type (or the opposite).
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This approach works on integer bugs detection at the bytecode level and is based
on two techniques, namely symbolic execution and taint analysis. It comprises 3
phases:

• Integer type inference: even though Solidity is a statically typed language, typ-
ing information is supposed to get lost at the bytecode level. The compiler,
however, leaves behind discrete trails (e.g., AND bitmask, SIGNEXTEND op-
code, etc) that the authors track down to deduce the size and sign of integers
in the bytecode.

• Integer bugs detection: a different detection technique is proposed for each of
the targeted integer bug types:

– arithmetic bugs: a constraint is emitted to the backend solver for each
arithmetic instruction. This constraint is formed so that it is only satisfied
if a set of predefined in-bounds requirements specific to the instruction in
question are not totally met. Consequently, a bug is detected if one of the
emitted constraints under some path conditions is found to be satisfiable
by the solver.

– truncation bugs: such bugs are detected by tracking the instructions used
by Solidity to perform truncation (i.e., AND and SIGNEXTEND for signed
and unsigned integers). A constraint is formed for such instructions as to
be satisfied if the input value is larger than the output. Consequently, a
truncation bug is detected if one of the emitted constraints under some
path conditions is found to be satisfiable by the solver, all while ignoring
two specific patterns for intentional truncation corresponding to truncation
due to a conversion to type address and truncation as a technique to fit
more than one variable into the same storage slot.

– signedness bugs: for this type of bugs, the authors reuse an approach that
was initially proposed for Linux programs [72] and adapt it for Solidity
smart contract. The gist of the applied method is to infer information on
signed and unsigned types on the values from the executed EVM instruc-
tions and spot the symbolic variables that can be assigned both types.

• False positives reduction: the authors actually consider this as two separate
steps, since they use two different techniques to reduce the rate of generated
false alarms. The first step is to apply taint analysis in order to check only
instructions whose input data is tainted (can be manipulated by an attacker) and
further validate only the ones that touch sensitive locations (can be harmful in
that they may alter the execution path, storage and ether flow). The second step
of false positives reduction is recognizing detected integer bugs which originate
from unharmful code such as an intentional check (if condition) meant to catch
an overflow bug.
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Tool The implemented tool called Osiris is written in Python. It operates over
the bytecode but can accept Solidity code as input which it internally compiles into
bytecode. It consists of 3 main components: (1) symbolic analysis is basically a
reuse of the previously presented Oyente tool, used to generate the bytecode’s CFG
and symbolically execute its instructions, (2) taint analysis checks, for each executed
instruction, whether it pertains to a specific set of instructions defined by the authors
as susceptible of being used by an attacker, in which case the locations it affects (in the
stack, memory and storage) are tagged and the propagation is carried out according
to the EVM semantics. It then checks if this instruction can be impactful on sensible
locations and (3) integer error detection is called upon the instructions detected by
the taint analysis, implements the errors detection methods discussed above and uses
Z3 to check for the feasibility of the created constraints.

Figure 3.5 shows the result for running Osiris on our example in Listing 3.1. The
tool detected an overflow bug as well as a truncation bug and located them in the
code.

Figure 3.5: Screenshot of the Osiris tool

Discussion This work focuses on a restrictive range of vulnerabilities, covering
specific integer-related bugs. On the one hand, the approach shows better results
than other existing approaches dealing in part with such vulnerabilities, yet its range
of application is thereby restricted. Additionally, Osiris points out the origin of the
detected vulnerability in the analysed code but does not provide an example of an
execution that may lead to an error, which would make it easier for the contract
writer to revise the code.
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3.2.3.5 Comparison and Discussion

The majority of the discussed approaches are based on the analysis of the EVM
bytecode instead of the higher-level Solidity source code which can be explained by
Solidity’s lack of formal semantics. In fact, Solidity comes with a well-specified gram-
mar [5] that defines its syntax, but there is no official source for a formal definition
of its semantics which is only informally specified through textual description in the
Solidity documentation [12] and directly implemented into its compilers. This has
led to recent efforts to provide formal semantics to Solidity as in [56] that proposes
an executable operational semantics for Solidity using the K-framework and [65] in
which the authors propose an executable denotational semantics for Solidity in the
Isabelle/HO theorem prover. In general, relying on the bytecode has its own impedi-
ment since it leads to the loss of contextual information, hence limiting the range of
properties that can be verified on the contract.

Table 3.2: Vulnerabilities supported by the proposed smart contract verification ap-
proaches

[67] [57] [97] [31] [64] [95] [79] [34] [103]
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Limited stack size - - - - + - - - +
Arithmetic bugs - ± - - ± + - - ±
Timestamp dependence - + - - + - - - +
Transaction order dependence - + + - + - - - +
Reentrancy + + + + + - - - +
Self destruction - - - + + - + - -
Gas run-out - - - - - - - - -
Other + + + + + - + + +

We notice that most of the proposed approaches, led by the first proposition [64],
use symbolic execution to generate the traces that would be used for the verification.
Such approaches usually use under-approximation (e.g., by setting loop bounds) which
means that critical violations can be overlooked.

A survey on the vulnerabilities in smart contracts [40] reports 49 bugs that can
occur in a smart contract, 29 of which were categorized using the Bugs Framework of
NIST into 10 bug classes. As shown in Table 3.2, the proposed verification methods
only target a limited number of these bugs, with a maximum of 18 claimed by the
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commercialized version of Securify [97]. We also note that 4 approaches give the
user the ability to express customized properties to check. None of them, however,
supports contract-specific properties. Moreover, we underline that only single function
reentrancy is considered in all of the existing approaches. Furthermore, none of the
proposed approaches deals with the verification of interacting contracts. This means
that the verification of smart contracts is a field that, despite having been investigated
at an early stage, still needs to be further studied to achieve correctness in smart
contracts and consolidate the desired trust in the Blockchain environment.

In the following we report tools comparisons included in their corresponding pa-
pers.

Zeus vs Oyente in [57] The evaluation of Zeus was done on a dataset of 1524 smart
contracts and its results were compared to Oyente’s for the commonly treated vulner-
abilities (reentrancy, unchecked send, BSD and TOD). 54 contracts were reported by
Zeus to be vulnerable to reentrancy against 265 by Oyente. The undetected bugs by
Zeus were said to be false positives caused by Oyente considering reentrancy possible
with send calls. This is not totally true, as using send can still be susceptible to
reentrancy if the allocated amount of gas were to be manually increased. For the
unchecked send vulnerability, Zeus was reported to detect 324 bugs with 3 false pos-
itives, against 112 bugs by Oyente with 89 false positives. The results for BSD show
more detected bugs by Zeus than Oyente, which is only logical since the former con-
siders multiple block variables while the latter only considers the block’s timestamp.
Zeus is also reported to detect more TOD bugs (607) than Oyente (126) with a lower
false alarm rate.

Osiris vs Zeus in [95] The authors of [95] evaluated their tool using a subset of
the dataset of smart contracts previously used by Zeus (they retrieved 883 out of 1524
contracts), and compared it to the latter for their commonly detectable bugs. Their
reported results show a big difference in the number of detected integer overflow/un-
derflow bugs with Zeus detecting 628/883 and Osiris detecting 172/883. They claim
that this difference can be explained by Zeus prioritizing completeness over the real
exploitability of its reported bugs. They also bring into question Zeus’s soundness by
manually investigating 5 contracts that were reported as containing bugs by Osiris
but not by Zeus and confirming their unsafety.

SASC vs Oyente in [103] In their comparison with Oyente, the authors in [103]
report more detected timestamp dependence bugs using their tool (866 by SASC
against 292 by Oyente out of 2952 contracts). In fact, this can be explained by the
different ways both tools use to target such a vulnerability. While Oyente detects
the use of timestamp whenever it is related to ether transfer only, SASC proceeds
differently by targeting its use in other operations as well. We also note that SASC
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is able to locate the bugs in the corresponding code, unlike Oyente that only signals
their presence.

Securify vs Oyente in [97] Results were compared to Oyente in [97] for the de-
tection of reentrancy, TOD and mishandled exceptions. The authors report better
results overall for Securify. Reentrancy was detected in the same number of contracts
by both tools, with presence of false positives with Oyente but not with Securify. As
for the other two vulnerabilities, Securify was reported to detect more valid occur-
rences than Oyente and no false negatives at all, albeit with a slightly higher number
of false positives.

3.2.3.6 Coloured Petri Nets for Smart Contracts

More recently, attempts have been made to use Coloured petri net for the verification
of smart contracts. The work in [62] shows an example of verification of behavioural
properties on a CPN model for a crowdfunding smart contract. It does not, however,
propose a complete and generic approach to apply on any smart contract as the
work merely presents case study of a manual passage from the use case’s contract
to the CPN model without defining general rules for the transformation. Another
CPN-based proposition was presented in [42]. The authors start from the contract’s
bytecode and use Hoare’s logic to generate the corresponding CPN model which is
then used for the security analysis of the contract. This approach, despite being
based on CPN, cannot be used for the verification of data-flow related properties as
the generated model focuses on the representation of the workflow extracted from the
contract’s CFG.

3.3 On the Verification of Business Process Models

A primordial phase in the life cycle of a business process is its verification. In order
to avoid execution mishaps whose gravity may vary with the level of criticality of the
modeled system, the designer needs to make sure that the model will actually satisfy
a set of requirements/specifications that define the correctness of the system. This
matter has been studied extensively in the case of imperative representations, as can
be seen by the survey conducted in [73]. BPMN being one of the most widely used
modeling languages for business processes, it is fairly easy to find in the literature
many studies that focus on the formal verification of various aspects of BPMN mod-
els [32, 39, 47, 81, 86, 102]. In such studies, it is frequent to encounter Petri nets as a
formalism used to add a formal aspect to the semantics of BPMN. In [39], the authors
propose a mapping of the core elements of the BPMN language into labelled Petri
nets patterns. This mapping was then implemented into a tool that automated the
generation of the Petri net and helped the semantic analysis of the modeled process.
Another Petri-net-based approach was proposed in [81] with the aim of analysing the
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feasibility of BPMN processes, this time using Colored Petri nets as a target formal
representation and a modified BPEL4WS representation as a pivot language. YAWL
is another important modeling language for business processes. It is based on Petri
nets and extended with specific concepts to easily model complex workflows. An au-
tomation of the transformation of BPMN models into YAWL was proposed in [102]
with the aim of verifying them using specific tools such as Woflan [99]. The aforemen-
tioned studies merely mark the starting point of the research on the verification of
business processes. Several other studies followed on the same path, using extensions
of Petri nets to take into account more complex models [58], and focusing on specific
aspects such as in [29,54].

Other formal methods have been used for the verification of business processes
like π-calculus in [86], event calculus in [47] and theorem proving in [32].

Similar to the imperative languages of business process modelling, the emergence
of the declarative modelling mode needs to be accompanied by suitable tools that
would allow the verification of its models. In fact, the implicit nature of the repre-
sentation of the workflow makes it less obvious to be interpreted by the designers and
therefore makes it easier for simple modelling errors to pass unnoticed. Moreover, the
dynamic and complex nature of the domains that require flexible models puts more at
stake and adds to the importance of having a verification tool that would insure the
correctness of the process model. However, compared to the rich state of the art on
the verification of imperative business process models, we notice a significant scarcity
in research on the verification of declarative models.

3.4 Conclusion

This chapter serves to present different approaches that are relevant to our work.
First, we reviewed the existing work on the verification of Solidity smart contracts.
We gave an overview of the solutions that use informal techniques and focused on
those that use formal techniques. We classified those into two main categories: (1)
approaches based on theorem proving and (2) approaches based on model checking,
which we then sub-categorized based on i the exact technique used for the verification
and ii their ability to verify the common vulnerabilities and possibility to verify
other properties. We selected four studies based on their relevance to our work and
their citation score, to present in detail, discuss and compare. Then we provided
an overview of the use of formal verification in context of BPM, showcasing the
importance of this phase in relation to different aspects of the Business processes.

Despite the multiple studies proposing formal verification approaches for Solidity
smart contracts, we showed that most of them use symbolic execution which leads to
incomplete verification results, and that none of them gives the users the possibility
to freely express the properties to be verified on their smart contracts, especially
properties that can depend on the data-flow of these contracts. This last point can
be very useful particularly if the behavioural context in which the smart contracts
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are to be used is well specified, in which case it would be interesting to verify the
smart contracts with regard to properties expressed on this context. Given that
such a context can intuitively be specified as a Business process, we also showed the
significant attention bestowed on the formal verification of Business process models
and highlighted the contrast between the literature on imperative representations
against that on declarative representations to conclude that the formal verification
of declarative models is still not mature. This further corroborates the need for
the verification of smart contracts especially when accompanied with a behavioural
context specification.
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4.1 Introduction

This chapter represents the first contribution of our work, which consists in the first
step towards our end-goal approach (Figure 4.1). With this contribution we aim to
achieve Obj1 which is part of the response to RQ1 . Herein we are interested in the
transformation of Solidity smart contract functions into what we call CPN building
blocks or sub-models. To do so, we propose generalized algorithms that transform
each type of statement into such CPN sub-models.
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Figure 4.1: Approach overview - Step 1

We lead off by setting some notations on the elements of the model in Section 4.2
before getting into the algorithms in Section 4.3.

4.2 Defining the Elements and Notations for our CPN
Models

In this section, we give details on the different elements that we use in our proposed
algorithms for the construction of the our CPN building blocks.

4.2.1 Transitions T

We distinguish two types of transitions in the sub-models:
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1. aggregated transitions (TA): used for the modular representation of function
calls. They are transitions that can be substituted by sub-models.

2. regular transitions (TR): are simple unsubstitutable CPN transitions.

For a transition t ∈ T we note:

• t.name, the name of the transition t

• t.statement, the Solidity code associated with transition t

• t.metaColour, the metaColour associated with the control flow places of tran-
sition t (if t ∈ TA)

• t.data, the set of data places associated with transition t (if t ∈ TA)

• t.sub − model, the CPN sub-model associated with transition t (if t ∈ TA),
with t.submodel.inTransitions designating its input (source) transitions and
t.submodel.outTransitions designating its output (sink) transitions

• t.guard, the guard of the transition t

4.2.2 Places P

We define 4 types of places according to the role they play:

• Control flow places PCF are places created to implement the order of execu-
tion of the workflow. We also use them to carry data related to the state of
the smart contract which can be defined by its balance and the values of its
state variables. Such places have a metaColour defined at each aggregated
transition of level-0 as the concatenation of the state and the input parame-
ters: [uint: contractBalance, typev1: stateVariable1, ..., typevn: stateVariablen,
typep1: inputParameter1, ... , typepn: inputParametern].

• Data places Pdata (for internal local variables) where each place is of a colour
corresponding to the represented variable’s type.

• Parameter places PP that convey potential inputs of function calls. Each func-
tion call has an associated parameter place whose colour is as follows [typep1:
inputParameter1, ..., typepn: inputParametern].

• Return places PR that communicate potential functions’ returned data. Each
function call has an associated return place whose colour corresponds to the
return type of the called function.
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4.2.3 Expressions E

An expression is a construct that can be made up of literals, variables, function calls
and operators, according to the syntax of Solidity, that evaluates to a single value.
For ease of representation, we define three types of expressions:

• expressions with variables EV : are expressions that make use of at least one
local variable. In such an expression ev, the set of variables used is accessible
via ev.vars.

• expressions with function calls EF : are expressions that make use of at least
one function call. In such an expression ev, the set of function calls used is
accessible via ev.fctCalls

• constant expressions EC : are expressions that do not make use of any variables
nor function calls.

We note that an expression e can of course have both variables and function calls
(e ∈ EV ∩ EF ).

4.2.4 Statements S

In this work, we cover the core features of the Solidity language according to the
definition of its grammar [5]. While we do not take into account all the Solidity
elements, the ones that we support can be considered exhaustive in the sense that
they can be used to rewrite smart contracts that include more syntactic sugar. We
note however, that we do not support smart contracts that include raw assembly code
in them as our main focus is the verification of the Solidity high-level code.

A statement st ∈ S can be either a compound statement {st[1]; st[2]; . . . ; st[N ]}
(where ∀i ∈ [1..N ], st[i] ∈ S), or a simple statement (stLHS , stRHS) (where stLHS ∈ E
and stRHS ∈ E), or a control statement. A simple statement can be:

• a function call statement, where:

– stLHS = ∅
– stRHS .vars designates the set of variables used in the arguments of the

call (if stRHS ∈ EV )

• an assignment statement, where:

– stLHS ∈ EV and stLHS .vars contains only one variable that designates the
assigned one

– stRHS .vars designates the set of variables used in the assignment expres-
sion (if stRHS ∈ EV )

– stRHS .fctCalls designates the set of function calls used in the assignment
expression (if stRHS ∈ EF )
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• a variable declaration statement, where:

– stLHS ∈ EV and stLHS .vars contains one variable that designates the
declared one

– stLHS .type designates the type of the declared variable

– stRHS .vars designates the set of variables used in the variable initialization
expression (if the variable is initialized and stRHS ∈ EV )

– stRHS .fctCalls designates the set of function calls used in the variable
initialization expression (if the variable is initialized stRHS ∈ EF )

• a sending statement, where:

– stLHS designates the destination account

– stRHS .vars designates the set of variables in the expression of the value to
be sent (if stRHS ∈ EV )

– stRHS .fctCalls designates the set of function calls in the expression of the
value to be sent (if stRHS ∈ EF )

• a returning statement, where:

– stLHS = ∅
– stRHS .vars designates the variables in the expression of the returned value

(if stRHS ∈ EV )

– stRHS .fctCalls designates the function calls in the expression of the re-
turned value (if stRHS ∈ EF )

A control statement can be:

• a requirement statement of the form require(c)

• a selection statement which can have:

– a single-branching form: if(c) then stT

– a double-branching form: if(c) then stT else stF

• a looping statement which can be:

– a for loop: for(init; c; inc) stT

– a while loop: while(c) stT

• where:

– c is a boolean expression

– c.vars designates the set of variables used in the condition (if c ∈ EV )

– c.fctCalls designates the set of function calls used in the condition (if
c ∈ EF )

– stT , stF , init and inc are statements (or blocks of statements)
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4.2.5 Additional Notations

For a smart contract SC we note:

• SC.vars, the set of state (i.e., global) variables of SC

• SC.fcts, the set of functions of SC

For a place p ∈ P we note:

• p.name, the name of the place p

• p.colour, the clour of the place p

For a transition t ∈ T we note:

• •t[cf ] ∈ PCF ∪ PS , the input control flow place of t

• •t[input] ∈ PP , the input parameters place of t

• •t[data] ⊆ Pdata, the input data places of t

• t • [cf ] ∈ PCF ∪ PS , the output control flow place of t

• t • [output] ∈ PR, the output return place of t

• t • [data] ⊆ Pdata, the output data places of t

4.3 Solidity-to-CPN: Preparing the Building Blocks

In the following, we present our proposed algorithms for the transformation of each
of the statement types in Solidity. It is worth mentioning that in our approach
we assume that the input smart contracts are syntactically correct as our aim is to
verify behavioural properties rather than syntactical ones. If the input contracts are
syntactically incorrect then our algorithms will evidently generate incorrect CPN sub-
models. We do not think that this is a heavy assumption as any Solidity compiler is
capable of detecting syntactical errors.

4.3.1 Generation of the Aggregated Transitions

The first step is to create an aggregated transition for each of the contract’s functions.
To do so, we propose the algorithm generateAggregations.

1: procedure generateAggregations(SC)
2: Input: a Solidity smart contract SC
3: Output: the aggregated transitions the CPN model of SC
4: metaColour ← [uint : contractBalance]
5: for v ∈ SC.vars do
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6: add (v.type : v.name) to metacolour
7: end for
8: for f ∈ SC.fcts do
9: create aggregated transition ta

10: ta.name← f.name
11: ta.statement← f.body
12: newColour ← metaColour
13: for p ∈ f.params do
14: add (p.type : p.name) to newColour
15: end for
16: ta.metaColour ← newColour
17: end for
18: end procedure

4.3.2 Preparing the Data Places

getLocalVariables creates a set of places to be used in the sub-model of a tran-
sition ta, corresponding to the local variables used in its function. To do so, the
statements in the function’s body are recursively investigated in search for variable
declaration statements. For each variable declaration statement found, a place bear-
ing the name of the variable and its type as its name and colour is created and added
to the set Pdata. In addition to standalone variable declarations, we note that we can
also find variables declared in the initialization of a For loop.

We opt for the construction of this set of places beforehand, as opposed to on the
fly during the construction of the sub-model, for the following reason. In Solidity,
a variable can be used before its declaration (as long as a declaration does exist).
Creating its corresponding place on the fly while creating the sub-model of a transition
would consequently require testing for its existence every time the variable is used in
a statement, as the creation of the place in question may have to happen prior to the
declaration statement, in any other statement using it (as part of stLHS or stRHS)
for the first time. On this account, we judge it more efficient to sweep the code first
for the construction of Pdata.

1: procedure getLocalVariables(st; Pdata)
2: Input: statement st, set of places Pdata being created
3: Output: updated Pdata with the set of places corresponding to local variables

in the statement st
4: if st is a variable declaration statement then
5: create place p
6: p.name← stLHS .vars.name
7: p.colour ← stLHS .type
8: add p to Pdata

9: else if st is a selection statement then
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10: getLocalVariables(stT , Pdata)
11: if st is a double-branching selection statement then
12: getLocalVariables(stF , Pdata)
13: end if
14: else if st is a looping statement then
15: if st is a for statement: for(init; c; inc)stT then
16: getLocalVariables(init, Pdata)
17: getLocalVariables(stT , Pdata)
18: else if st is a while statement: while(c)stT then
19: getLocalVariables(stT , Pdata)
20: end if
21: else if st is a compound statement {st[1]; st[2]; . . . ; st[N ]} then
22: for i = 1..N do
23: getLocalVariables(st[i], Pdata)
24: end for
25: end if
26: end procedure

4.3.3 Creation of the Building Blocks

We see a smart contract function as a set of statements. To each one of the statement
types we define a corresponding pattern in CPN, according to which a snippet of a
CPN model is generated. The resulting snippets are linked according to the function’s
internal workflow. The createSubModel implements such correspondences1.

1: procedure createSubModel(t; st; pin; pout)
2: Input: transition t, statement st, control flow input place pin, control flow

output place pout
3: Output: sub-model of transition t
4: switch st do
5: case compound statement {st[1]; st[2]; . . . ; st[N ]}
6: buildCompoundStatement(t;st;pin;pout)

7: case simple statement
8: switch st do
9: case assignment statement

10: buildAssignmentStatement(t;st;pin;pout)

11: case variable declaration statement
12: buildVariableDeclarationStatement(tst;;pin;pout)

13: case sending statement
14: buildSendingStatement(t;st;pin;pout)

1We note that in case a place does not exist (p = ∅) then any arc creation involving that place
does not take effect.
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15: case returning statement
16: buildReturningStatement(t;st;pin;pout)

17: case function call statement
18: buildFunctionCallStatement(t;st;pin;pout)

19: end switch
20: case control statement
21: switch st do
22: case requirement statement
23: buildRequirementStatement(t;st;pin;pout)

24: case selection statement
25: buildSelectionStatement(t;st;pin;pout)

26: case looping statement
27: switch st do
28: case for statement
29: buildForLoopStatement(t;st;pin;pout)

30: case while statement
31: buildWhileLoopStatement(t;st;pin;pout)

32: end switch
33: end switch
34: end switch
35: end procedure

createSubModel browses the body of the transition’s corresponding function
recursively, statement by statement, and creates snippets of a CPN model according
to the type of the processed statement (cf. figures 4.2-4.12) that interconnect to create
the transition’s sub-model. In the following we give the transformation algorithm for
each of the statement types, as well as their corresponding CPN patterns.

4.3.3.1 The Compound Statement Block

Compound statement {st[1]; st[2]; . . . ; st[N ]}: the algorithm is re-executed on each
component statement st[i], after creating N−1 control flow places (of themetaColour
colour) to interconnect the resulting CPN snippets while merging the entering point
of the snippet of st[1] with the entering point of the snippet of st and the exiting
point of st[N ] to that of the snippet of st.

p1 p2 pN-1Pin Pout

….

Figure 4.2: Compound Statement Pattern
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1: procedure buildCompoundStatement(t; st; pin; pout)
2: Input: transition t, a compound statement st ={st[1]; st[2]; . . . ; st[N ]},

control flow input place pin, control flow output place pout
3: Output: sub-model for statement st
4: for i = 1..N − 1 do
5: create place pi
6: end for
7: createSubModel(t;st [1];pin;p1)
8: for i = 2..N − 1 do
9: createSubModel(t;st [i ];pi-1;pi)

10: end for
11: createSubModel(t;st [N ];pN-1;pout)
12: end procedure

4.3.3.2 The Assignment Statement Block

t’
Pin Pout

stRHS

Pdata[stRHS.v1] Pdata[stRHS.vn]

Pdata_1
Pdata_n…...

…...

Pdata[stLHS.v]

Pdata

Figure 4.3: Local variable assignment

Assignment statement (stLHS , stRHS): to represent such a statement, a transition
t′ is created with input and output links to, respectively, the input (pin) and output
(pout) places passed as parameters. t′ is also connected to the places in Pdata that
correspond to the variables used in the statement’s RHS with input/output links (to
read the data). In case of a local variable assignment (Figure 4.3), an input/output
link is created with the place corresponding to the assigned variable in the statement’s
LHS with the new value (stRHS) inscribed on the output link. In case of a state
variable assignment (Figure 4.4), the new value (stRHS) is given in the variable’s
corresponding placement in the inscription on the link to the output (pout) place.

1: procedure buildAssignmentStatement(t; st; pin; pout)
2: Input: transition t, an assignment statement st = (stLHS , stRHS), control

flow input place pin, control flow output place pout
3: Output: sub-model for statement st
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t’
Pin

[…,stLHS.v,…] Pout
[…,stRHS,...]

Pdata[stRHS.v1] Pdata[stRHS.vn]

Pdata_1 Pdata_n
…...

…...

Pdata

Figure 4.4: Global variable assignment

4: create transition t′

5: create arc from pin to t′

6: connectLocalVariables(stRHS .vars\{stLHS .vars};t;t′)
7: connectFunctionCalls(stRHS .fctCalls;t)
8: if stLHS .vars is a local variable then
9: create arc from t.data[stLHS .vars] to t

′

10: create arc from t′ to t.data[stLHS .vars] with inscription stRHS

11: create arc from t′ to pout
12: else
13: create arc from t′ to pout with inscription outInsc ← inInsc in which the

variable corresponding to stLHS .vars is replaced by stRHS

14: end if
15: end procedure

4.3.3.3 The Variable Declaration Statement Block

t’
Pin Pout

stRHS

Pdata[stRHS.v1] Pdata[stRHS.vn]

Pdata_1 Pdata_n
…...

…...

Pdata[stLHS.v]

Pdata

Figure 4.5: Variable Declaration Statement Pattern
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Variable Declaration statement (stLHS , stRHS): the algorithm creates a transition
t′ with input and output links to, respectively, the input (pin) and output (pout)
places passed as parameters. Input/output links are created from and to the places
corresponding to the variables used in the statement’s RHS. An output link is also
created to the place representing the declared variable with stRHS as inscription.

1: procedure buildVariableDeclarationStatement(t; st; pin; pout)
2: Input: transition t, a variable declaration statement st = (stLHS , stRHS),

control flow input place pin, control flow output place pout
3: Output: sub-model for statement st
4: create transition t′

5: create arc from pin to t′

6: connectLocalVariables(stRHS .vars;t;t
′)

7: connectFunctionCalls(stRHS .fctCalls;t)
8: create arc from t′ to t.data[stLHS .vars] with inscription stRHS

9: create arc from t′ to pout
10: end procedure

4.3.3.4 The Sending Statement Block

Sending statement (stLHS , stRHS): the CPN snippet for a sending statement is gen-
erated in a way that is similar to that of the case of a global variable assignment,
except that instead of updating the assigned variable’s counterpart on the output link
to pout the algorithm updates the contractBalance and balance values from the input
of t′ by decreasing the first and increasing the second by stRHS .

t’

Pin

[contractBalance,
…,balance, …] Pout

[contractBalance-stRHS,
…,balance+stRHS, …]

Pdata[stRHS.v1] Pdata[stRHS.vn]

Pdata_1 Pdata_n…...

…...

Pdata

Figure 4.6: Sending Statement Pattern

1: procedure buildSendingStatement(t; st; pin; pout)
2: Input: transition t, a sending statement st = (stLHS , stRHS), control flow

input place pin, control flow output place pout
3: Output: sub-model for statement st
4: create transition t′

5: create arc from pin to t′
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6: connectLocalVariables(stRHS .vars;t;t
′)

7: connectFunctionCalls(stRHS .fctCalls;t)
8: create arc from t′ to pout with inscription outInsc ← inInsc in which the

variable corresponding to the sender’s (respectively the contract’s) balance is
incremented (respectively decremented) by stRHS

9: end procedure

4.3.3.5 The Returning Statement Block

Returning statement (−, stRHS): this is also treated similarly to a global variable
assignment statement, but with the following differences. t′ is linked to t• [cf ] instead
of pout with the same inscription of its input link with pin, and has an additional output
link with the output return place t • [output] with the return value set to stRHS in its
inscription, with the same sender’s address and balance from its input inscription.

t’

Pin

[…, sender,
balance,…]

t●[output]
[sender, balance, stRHS]

Pdata[stRHS.v1] Pdata[stRHS.vn]

Pdata

Pdata_1 Pdata_n
…...

…...

t●[cf]
[…, sender,
balance,…]

Figure 4.7: Returning Statement Pattern

1: procedure buildReturningStatement(t; st; pin; pout)
2: Input: transition t, a returning statement st = (stLHS , stRHS), control flow

input place pin, control flow output place pout
3: Output: sub-model for statement st
4: create transition t′

5: create arc from pin to t′

6: connectLocalVariables(stRHS .vars;t;t
′)

7: connectFunctionCalls(stRHS .fctCalls;t)
8: create arc from t′ to t • [cf ]
9: create arc from t′ to t • [output] with inscription outInsc ← [inInsc.sender,
inInsc.balance, stRHS ]

10: end procedure
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4.3.3.6 The Function Call Statement Block

1: procedure buildFunctionCallStatement(t; st; pin; pout)
2: Input: transition t, a function call statement st = (stLHS , stRHS), control

flow input place pin, control flow output place pout
3: Output: sub-model for statement st
4: create transition tf

5: create place pparamf

6: create arc from pin to tf

7: create arc from pparamf
to tf

8: connectLocalVariables(fRHS .vars;t;t
f )

9: connectFunctionCalls(fRHS .fctCalls;t)
10: create arc from tf to pout with a placeholder inscription
11: end procedure

4.3.3.7 The Requirement Statement Block

Requirement statement require(c): such a statement is transformed by creating two
transitions trevert and t!revert, with !c and c as respective guards, input links with
pin and input/output links with the places representing local variables used in c.
Transition trevert has •t[cf ] as output place whereas pout is the output place of t!revert.
We note that, as a requirement statement is often placed at the beginning of the
function, pin and •t[cf ] are usually the same.

Pin

Pout

●t[cf]

[!c]
trevert

[!c]
trevert

t!revert
[c]

t!revert
[c]

Pdata[c.v1] Pdata[c.vn]

Pdata
Pdata_1 Pdata_n

…...

…...Pdata[c.v1] Pdata[c.vn]

Pdata
Pdata_1 Pdata_n

…...

…...

Figure 4.8: Requirement Statement Pattern

1: procedure buildRequirementStatement(t; st; pin; pout)
2: Input: transition t, a requirement statement st = require(c), control flow

input place pin, control flow output place pout
3: Output: sub-model for statement st
4: create transition trevert
5: trevert.guard←!c
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6: create arc from pin to trevert
7: create arc from trevert to •t[cf ]
8: connectLocalVariables(c.vars;t;trevert)
9: connectFunctionCalls(c.fctCalls;trevert)

10: create transition t!revert
11: t!revert.guard← c
12: create arc from pin to t!revert
13: create arc from t!revert to pout
14: connectLocalVariables(c.vars;t;t!revert)
15: connectFunctionCalls(c.fctCalls;t!revert)
16: end procedure

4.3.3.8 The Selection Statement Block

Selection statement if(c) then stT [else stF ]: the algorithm creates two transitions,
tT with guard c and tF with guard !c, that respectively represent the activation of
the true and false (or default) branches of the selection statement. Both transition
are linked to the input place pin and any places representing local variables used in
c. createSubModel is then recursively called for the true-branch statement. In
case of a one-branch selection, tF is linked directly to the output place pout. In case
of a double-branch selection, a new place pF is created to be the output place of tF
and the input place in a recursive call for createSubModel on the false-branch
statement.

Pin PT

[!c]
tF

[!c]
tF

tT
[c]

tT
[c]

Pout

Pdata[c.v1] Pdata[c.vn]

Pdata

Pdata_1 Pdata_n…...

…...
Pdata[c.v1] Pdata[c.vn]

Pdata

Pdata_1 Pdata_n…...

…...

Figure 4.9: One-branch selection Statement Pattern

1: procedure buildSelectionStatement(t; st; pin; pout)
2: Input: transition t, a selection statement st = if(c) then stT [else stF ],

control flow input place pin, control flow output place pout
3: Output: sub-model for statement st
4: create place pT
5: create transition tT
6: tT .guard← c



80 Formal Modeling of Solidity Smart Contracts

Pin PT

[!c]
tF

[!c]
tF

tT
[c]

tT
[c]

Pout

Pdata[c.v1] Pdata[c.vn]

Pdata

Pdata_1 Pdata_n…...

…...
Pdata[c.v1] Pdata[c.vn]

Pdata

Pdata_1 Pdata_n…...

…...

PF

Figure 4.10: Double-branch selection Statement Pattern

7: create arc from pin to tT
8: create arc from tT to pT
9: connectLocalVariables(c.vars;t;tT )

10: connectFunctionCalls(c.fctCalls;tT )
11: createSubModel(t;stT;pT;pout)
12: create transition tF
13: tF .guard←!c
14: create arc from pin to tF
15: connectLocalVariables(c.vars;t;tF )
16: connectFunctionCalls(c.fctCalls;tF )
17: if st is a selection statement: if(c) then stT then
18: create arc from tF to pout
19: else if st is a selection statement: if(c) then stT else stF then
20: create place pF
21: create arc from tF to pF
22: createSubModel(t;stF;pF;pout)
23: end if
24: end procedure

4.3.3.9 The For Loop Statement Block

For Looping statement for(init; c; inc) stT : three places, pinit, pc and pT , are created
to respectively represent initialization, increments and one pass of the loop’s body.
Transitions tT with guard c and tF with guard !c are created and linked to the input
place pin and any places representing local variables used in c. tT is linked to pc as
output to trigger a counter increment while tF is linked to pout as output to leave the
loop. createSubModel is recursively called with three statements: init which is
usually a variable declaration statement with initialization, stT to develop the CPN
snippet for one run of the loop, and inc which is usually an assignment to a local
variable type of statement.
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Pinit

Pc

[!c]
tF

[!c]
tF

tT
[c]

tT
[c]

PoutPin

PT

Pdata[c.v1] Pdata[c.vn]

Pdata

Pdata_1 Pdata_n…...

…...
Pdata[c.v1] Pdata[c.vn]

Pdata

Pdata_1 Pdata_n…...

…...

Figure 4.11: For Looping Statement Pattern

1: procedure buildForLoopStatement(t; st; pin; pout)
2: Input: transition t, a for looping statement st = for(init; c; inc) stT , control

flow input place pin, control flow output place pout
3: Output: sub-model for statement st
4: create place pinit
5: create place pc
6: create place pT
7: createSubModel(t;init;pin;pinit)
8: create transition tT
9: tT .guard← c

10: create arc from pinit to tT
11: connectLocalVariables(c.vars;t;tT )
12: connectFunctionCalls(c.fctCalls;tT )
13: create arc from tT to pc
14: create transition tF
15: tF .guard←!c
16: create arc from pinit to tF
17: connectLocalVariables(c.vars;t;tF )
18: connectFunctionCalls(c.fctCalls;tF )
19: create arc from tF to pout
20: createSubModel(t;stT;pc;pT)
21: createSubModel(t;inc;pT;pinit)
22: end procedure

4.3.3.10 The While Loop Statement Block

While Looping statement while(c) stT : for this loop the algorithm proceeds by cre-
ating one new place pT which will be the output for a new transition tT with guard c.
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Another transition tF is also created with !c as guard and pout as output place. Both
transition are linked to the input place pin and any places representing local variables
used in c. A recursive call to createSubModel on stT with pT for input and pin
for output places is responsible for the generation of the loop’s body corresponding
CPN snippet.

Pdata[c.v1] Pdata[c.vn]

PT

[!c]
tF

[!c]
tF

tT
[c]

tT
[c]

Pout

Pin

Pdata

Pdata_1 Pdata_n
…...

…...

Figure 4.12: While Looping Statement Pattern

1: procedure buildWhileLoopStatement(t; st; pin; pout)
2: Input: transition t, a while looping statement st = while(c) stT stT , control

flow input place pin, control flow output place pout
3: Output: sub-model for statement st
4: create place pT
5: create transition tT
6: tT .guard← c
7: create arc from pin to tT
8: connectLocalVariables(c.vars;t;tT )
9: connectFunctionCalls(c.fctCalls;tT )

10: create arc from tT to pT
11: create transition tF
12: tF .guard←!c
13: create arc from pin to tF
14: connectLocalVariables(c.vars;t;tF )
15: connectFunctionCalls(c.fctCalls;tF )
16: create arc from tF to pout
17: createSubModel(t;stT;pT;pin)
18: end procedure

4.3.4 Connecting the Data Places

1: procedure connectLocalVariables(V; t; t’)
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2: Input: set of local variables V , transition t, transition t′

3: Output: sub-model with connections to local variables
4: for v ∈ V do
5: create arc from t.data[v] to t′

6: create arc from t′ to t.data[v]
7: end for
8: end procedure

4.3.5 Connecting the Function Calls

1: procedure connectFunctionCalls(FC; t)
2: Input: set of function calls FC, transition t
3: Output: sub-model with connections to function calls
4: for f ∈ FC do
5: create transition tf

6: create place preturnf

7: create place pparamf

8: connectLocalVariables(fRHS .vars;t;t
f )

9: create arc from pparamf
to tf with inscription in which every element of

fRHS is replaced by its corresponding argument
10: create arc from tf to preturnf

with a placeholder inscription
11: end for
12: end procedure

Example of Application

Figure 4.13 represents the resulting sub-model obtained by applying our transfor-
mation algorithms (initiated by the createSubModel algorithm) on the function
withdraw() of the BlindAuction contract (Listing 2.1 - Lines 31 to 42).

P1

am

PT

PT2

PF2

P2

T1

TT

TF

TT2

TF2

T2

T3

T4

Figure 4.13: CPN sub-model of the withdraw() function in the Blind Auction contract
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The buildCompoundStatement is first called on the body of the function,
creating the places P1 and P2 and then recursively calling createSubModel on all
the statements it comprises. The algorithm corresponding to the statement’s type is
invoked each time, adding the necessary places and transitions in conformance to the
defined patterns.

4.4 Conclusion

In this chapter, we achieved our objective Obj1 mentioned in Section 1.3 which is
providing a formal model for Solidity smart contracts. To do so, we have defined a
CPN model for a Solidity smart contract by defining a CPN pattern for each statement
type of the language. We have automated this transformation by providing a set of
transformation algorithms that would generate the corresponding CPN sub-model
according to the type of the statement they get as input and its corresponding CPN
pattern. These CPN sub-models will be used as building blocks in the rest of our
approach.
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5.1 Introduction

This chapter represents the second contribution of our work, which consists in the
second step towards our end-goal approach (Figure 5.1). With this contribution we
aim to achieve Obj2 which is part of the response to RQ2 and RQ4 .

We recall that the desired behavior of smart contracts can be intuitively depicted
using a business process representation that would describe the context in which
the smart contracts are intended to be used. Such a behavioral context may easily
originate from a description of a business model. Herein we are interested in the
generation of the context’s CPN sub-model for such business models. We consider
two types of behavioral context specifications for smart contracts:

1. completely-free if no information is provided on the execution context of a con-
tract (Section 5.2)

2. constrained if the context in which a smart contract is used is provided (e.g., as
a DCR Graph or a BPMN model)(Section 5.3).

85
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Figure 5.1: Approach overview - Step 2

5.2 Completely Free Behavioural Context

In case no behavioural context specification is provided with the smart contracts to
be verified, we define a CPN model to represent the execution of these contracts in a
completely-free way. In such a model (see Figure 5.2) a place S is used to represent
the global state of the blockchain environment shared by all of the smart contracts’
functions. For each function fi a place Pi is used to represent its input parameters.
The initial marking of a place Pi corresponds to all the possible calling arguments for
fi. In the following we give the formal definition of CPN4Free, the CPN model that
we propose for the representation of a a free context.

Definition 5.2.1 (CPN4Free). Given a set of smart contracts SSC = {SCi, ∀i ∈
[1, n]}, such that n is the number of smart contracts to be verified and ∀SCi ∈
SSC, SCi = (fji, vhi),∀j ∈ [1, ni],∀h ∈ [1,mi] where ni is the number of functions
in SCi and mi is the number of global variables in SCi, we denote by Paramji =
{paramk

ji,∀k ∈ [1, nji]}, the set of input parameters of the function fji such that
nji is the number of such parameters. A corresponding CPN model CPN4Free =
(P, T,A,Σ, V, C,G,E, I) (depicted in figure 5.2) is defined as follows:

• P = {S} ∪ Pparam, where Pparam =
⋃

i∈[1,n] Pi, such that ∀i ∈ [1, n], Pi =
{pji, ∀j ∈ [1, ni]}
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• T =
⋃

i∈[1,n] Ti, such that ∀i ∈ [1, n], Ti = {tji,∀j ∈ [1, ni]}

• A = {(ti, S), ∀ti ∈ T} ∪ {(S, ti),∀ti ∈ T} ∪ {(pji, tji),∀pji ∈ Pi,∀tji ∈ Ti,∀i ∈
[1, n]}

• Σ = {CS}∪{CPji ,∀i ∈ [1, n], ∀j ∈ [1, ni]}, where CPji = [typeparam1
ji
: param1

ji, ..., typeparam
nji
ji

:

param
nji

ji ] and CS = [uint : contractBalance, typev11 : v11, ..., typevmnn : vmnn]×
CP11 × ...× CPmnn

• V = {x, x′} ∪ {vpji,∀i ∈ [1, n], ∀j ∈ [1, ni]}, with Type[x] = Type[x′] = CS and
Type[vpji] = CPji ,∀i ∈ [1, n], ∀j ∈ [1, ni]

• C = {S → CS} ∪ {pji → CPji ,∀pji ∈ Pi, ∀i ∈ [1, n]}

• G = ∅

• E = {a → x,∀a ∈ A ∩ ({S} × T )} ∪ {a → x′, ∀a ∈ A ∩ (T × {S})} ∩ Eparam,
where Eparam =

⋃
i∈[1,n]{a→ pji, ∀j ∈ [1, ni]}

• I = {p→ initp,∀p ∈ P}, where initp is a predefined initialisation that depends
on the type of the place.

p11 S pnnn
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tji

vpji

x′ x

t11
vp11

x
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tnnn

vpnnn
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x

•
•
•

•
•

•

Figure 5.2: CPN model for a completely-free behavioural context

5.3 Constrained Behavioural Context - A CPN Model
for DCR Choreographies

The behavior of smart contracts can be captured either imperatively or declaratively.
Existing BPMN-to-CPN transformations [38, 69], as well as CPN models could be
leveraged for an imperative representation, which is why in the following we will
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focus on the integration of declarative representations, namely DCR graphs, into our
work. The approach that we propose for the verification of smart contracts with
a DCR graph/choreography as a behavioral context specification is based on the
transformation of the latter into a CPN model that holds the same semantics.

To this end, we start by presenting, in Section 5.3.1 a CPN model for a DCR graph.
This model being only adequate for the verification of state-based LTL properties,
we propose an extension in Section 5.3.2, that can be seen as a generalization to
the first model and that would allow the verification of both state- and event-based
LTL properties. Finally, we present in Section 5.3.3 a second extension to our model
that consists in a transformation of a DCR choreography by taking into account the
concept of roles.

5.3.1 CPN4DCR - Initial Model

In the following we give the formal definition of the initial CPN4DCR model that we
propose and showcase its capabilities and limitations for LTL model checking.

Definition 5.3.1 (CPN4DCR). Given a DCR graph G = (E,M,Act,→•, •→,±, l),
a corresponding CPN model CPN4DCR = (P, T,A,Σ, V, C,G,E, I) (depicted in fig-
ure 5.3) is defined as follows:

• P = {S}

• T = {ti,∀i ∈ [1, n]}, with n = |E| the number of events in G

• A = {(ti, S),∀ti ∈ T} ∪ {(S, ti), ∀ti ∈ T}

• Σ = {CE , (CE × CE × CE)}, where CE is a colour defined as an integer type
(CE = range INT ) where each event ei ∈ E is represented in CE by its index.

• V = {Ex,Re, In,Ex′, Re′, In′}, with Type[v] = CE ,∀v ∈ V

• C = {S → (CE × CE × CE)}

• G = {ti → guardi,∀i ∈ [1, n]}, with n = |E|

• E = {a→ ⟨Ex,Re, In⟩,∀a ∈ A∩ (P ×T )}∪{a→ ⟨Ex′, Re′, In′⟩,∀a ∈ A∩ (T ×
P )} with

⋆ Ex′ = Ex ∪ ei,
⋆ Re′ = (Re\ei) ∪ e•→ and

⋆ In′ = (In ∪ ei →+)\e→%

• I = {S → ⟨S1, S2, S3⟩} with ⟨S1, S2, S3⟩ the initial marking M of G

For all ti ∈ T representing an event ei in the DCR graph, we further precise that:
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• guardi is the conjunction of the conditions defining the enabling of the corre-
sponding event ei:

1. i ∈ In,
2. (→•i ∩ In) ∈ Ex and

3. (→⋄i ∩ In) ∈ E\Re

• the expression ⟨Ex′, Re′, In′⟩ on its output arc is defined such that:

1. Ex′ = Ex ∪ i,
2. Re′ = (Re\i) ∪ i•→ and

3. In′ = (In ∪ i→+)\i→%

⟨S1, S2, S3⟩

S

t1

[guard1]

tn

[guardn]

⟨Ex,Re, In⟩

⟨Ex′, Re′, In′⟩

⟨Ex′, Re′, In′⟩

⟨Ex,Re, In⟩

• • •

Figure 5.3: Initial CPN4DCR

The application of this definition on the DCR graph that would be obtained from
the DCR graph example in figure 2.2 is shown in figure 5.4.

Definition 5.3.2 (Marking Equivalence). A marking MG = ⟨Ex,Re, In⟩ of a DCR
graph G is said to be equivalent to a marking MC = ⟨S → ⟨S1, S2, S3⟩⟩ of a CPN
model C iff

• ∀ei ∈ Ex (respectively Re and In),∃i ∈ S1 (respectively S2 and S3), and

• ∀i ∈ S1 (respectively S2 and S3), ∃ei ∈ Ex (respectively Re and In)

We note MG ≡MC .

Definition 5.3.3 (Execution Sequence Equivalence). An execution sequence of length
k, σGk = ⟨ei, ..., ej⟩ of a DCR graph G is said to be equivalent to an execution sequence
of length k, σCk = ⟨ti, ..., tj⟩ of a CPN model C iff
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Figure 5.4: Initial CPN4DCR for the Blind Auction example

• (MG
1 ≡MC

1 ∧MG
1

σG
k−−→MG

2 ∧MC
1

σC
k−−→MC

2 ) =⇒ MG
2 ≡MC

2

We note σGk ≡ σCk .

Proposition 5.3.1. Let G be a DCR graph and C the corresponding CPN model
generated as per definition 5.3.1, then G and C are semantically equivalent.

Proof. Let G be a DCR graph and C the corresponding CPN model generated as per
definition 5.3.1. In order to prove that G and C are semantically equivalent we need
to prove that

1. ∀σGk = ⟨e1, ..., ek⟩,∃σCk = ⟨t1, ..., tk⟩, and

2. ∀σCk = ⟨t1, ..., tk⟩,∃σGk = ⟨e1, ..., ek⟩

such that σGk ≡ σCk , ∀k ∈ [1,m] with m the length of the longest execution sequence.
We start by proving (1):

• Let P (n) be the statement: ∀σGn = ⟨e1, ..., en⟩, ∃σCn = ⟨t1, ..., tn⟩ such that
σGn ≡ σCn .

• P (1) : ∀σG1 = ⟨e1⟩, ∃σC1 = ⟨t1⟩ such that σG1 ≡ σC1 . This can be derived
from Definition 5.3.1. In fact, the initial marking of C (MC

0 ) being defined as
equivalent to that of G (MG

0 ), and the guard of each transition ti ∈ T being
defined as to correspond to the enabling conditions of the relative event ei ∈ E,
we can deduce that the set of fireable transitions (MC

0 →) corresponds to the set
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p0
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Figure 5.5: State- vs event-based LTL property example

of enabled events (MG
0 →). Additionally, the marking MC

i obtained by firing ti
is equivalent to that obtained by executing ei (M

C
i ≡ MG

i ) since the elements
of MC

i are defined as to correspond to the effect of the execution of ei in G.

• Assume that P (k) : ∀σGk = ⟨e1, ..., ek⟩,∃σCk = ⟨t1, ..., tk⟩ such that σGk ≡ σCk
is true for some k ∈ [2,m − 1]. We will prove that P (k + 1) : ∀σGk+1 =

⟨e1, ..., ek+1⟩,∃σCk+1 = ⟨t1, ..., tk+1⟩ such that σGk+1 ≡ σCk+1 is true.

σGk+1 ≡ σCk+1 =⇒ ∃ek+1 ∈ E, tk+1 ∈ T such that σGk · ek+1 ≡ σCk · tk+1 (5.1)

σGk ≡ σCk ⇐⇒ (MG
0

σG
k−−→MG

k ∧MC
0

σC
k−−→MC

k ∧MG
k ≡MC

k ) (5.2)

Analogously to the reasoning in the previous point, we can deduce that:

∀ek+1 ∈ E such that MG
k

ek+1−−−→MG
k+1,

∃tk+1 ∈ T such that (MC
k

tk+1−−−→MC
k+1 ∧MG

k+1 ≡MC
k+1)

(5.3)

And therefore:

∀σGk+1 = ⟨e1, ..., ek+1⟩,∃σCk+1 = ⟨t1, ..., tk+1⟩ such that σGk+1 ≡ σCk+1 (5.4)

The second part (2) is provable following a similar reasoning.

5.3.1.1 Discussion

It is evident to see that a DCR graph is a model based on events or tasks, which in
our corresponding CPN model we represent by transitions. It is therefore sensible to
assume that the users would want to formulate the properties to be verified based on
those tasks. Such properties can refer to (i) the execution of an event, which would
translate into a property about the firing of its corresponding transition in the CPN
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model, or to (ii) the possibility of executing an event, which would translate into a
property about the fireability of its corresponding transition. The nuance between the
two cases might seem subtle, but the difference is rather plain when it comes to their
expression in LTL. To explain this, we will refer to the simple example in figure 5.5.
In fact, it would be easy to express a property on the firing of a transition (e.g., if
transition t1 is fired, transition t2 will eventually be fired in the future) using event-
based LTL. Such a property would be, in that case, simply expressed as follows:
G(t1 =⇒ Ft2). Expressing the same property using state-based LTL cannot be
accomplished in such a straightforward and intuitive way. In general, to express the
firing of a transition in state-based LTL we would have to resort to markings. Thus,
“a transition t is fired” is expressed by the fact that we reach a marking m′ that is
the immediate successor of a marking m and where the difference between the two
markings corresponds to the effects of firing t. More rigorously, t is fired if ∃m′ s.t
m → m′ with m ∧ Xm − pre(t) + post(t). On the other hand, it can be intuitive to
express properties on the fireability of a transition (e.g., transition t2 may be fired in
the future) using state-based LTL as follows: G(Fp1). In general, the fireability of a
transition is expressed as having the conditions for its firing satisfied and therefore as a
property on its input places. Trying to express the same property in event-based LTL
would result in a formula on the transitions that need to be fired for the transition
in question to be fireable which can be very hard to do in complex models as it is
a counter-intuitive reasoning. To be able to express both kinds of properties, we
would ideally have a model checker that supports both event-based and state-based
LTL formulae. In reality, model checkers only support one kind of LTL properties.
To get around this technical limitation, we propose a second CPN model for DCR
graphs that allows to easily and efficiently express event-based properties as state-
based ones (without having to resort to markings). Consequently, we allow the users
to express both kinds of properties on the events of their DCR graph and support
their verification without forcing the users to express them in a counter-intuitive way.

5.3.2 CPN4DCR - Generalization for event-based properties

If we go back to the example in figure 5.5, we note that, if we remove the transition t′1,
we can find a much simpler state-based LTL property to express the event-based one
that we had given as example (G(t1 =⇒ Ft2)). In fact, we would not have to resort
to expressing a property on the markings of the model, and the following expression:
G(p1 =⇒ Fp2) would be enough to express an equivalent state-based property to
the former one. This is mainly due to the fact that by removing the transition t′1, the
place p1 can only be marked by the firing of t1, and therefore having a token in that
place forcibly implies that t1 has been fired.
The idea behind our second model is inspired by this particular case, and it consists
mainly in introducing a set of additional places P T to the first proposed model, such
that we would have one and only one place pT ∈ P T marked when a transition
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(corresponding to an event in the DCR graph) is fired. We also add a set of fake
transitions TF whose role is solely to connect the added places to the main place S of
our first model. The definition of our second model can therefore be given as follows:

Definition 5.3.4 (CPN4DCR2). Given a DCR graph G = (E,M,Act,→•, •→,±, l)
and its corresponding initial CPN4DCR model CPN4DCR = (P, T,A,Σ, V, C,G,E, I)
as defined in definition 5.3.1, an event-oriented generalization CPN4DCR model
G CPN4DCR = (P ′, T ′, A′,Σ′, V ′, C ′, G′, E′, I ′) (depicted in figure 5.6) is defined
s.t.:

• P ′ = P ∪ P T

• P T = {pTi ,∀i ∈ [1, n]}, with n = |E| the number of events in G

• T ′ = T ∪ TF

• TF = {tFi ,∀i ∈ [1, n]}, with n = |E| the number of events in G

• A′ = {(S, ti), ∀ti ∈ T} ∪ {(ti, pTi ),∀ti ∈ T and pTi ∈ P T } ∪ {(pTi , tFi ),∀pTi ∈ P T

and tFi ∈ TF } ∪ {(tFi , S), ∀tFi ∈ TF }

• Σ′ = Σ

• V ′ = V ∪ {X}, with Type[X] = (CE × CE × CE)

• C ′ = C ∪ {pTi → (CE × CE × CE), ∀pTi ∈ P T }

• G′ = G

• E′ = {a → ⟨Ex,Re, In⟩, ∀a ∈ A ∩ ({S} × T )} ∪ {a → ⟨Ex′, Re′, In′⟩,∀a ∈
A∩(T×P T )}∪{a→ X,∀a ∈ A∩(P T×TF )∪(TF , {S})} with (1) Ex′ = Ex∪ei,
(2) Re′ = (Re\ei) ∪ e•→ and (3) In′ = (In ∪ ei →+)\e→%

• I ′ = I

5.3.2.1 Optimization of the model

Adding fake transitions and places to our CPN model would indeed increase the
size of its state space since we are basically creating intermediate states between
the original states from the initial model. This would affect the performance of the
model checker that’s supposed to take in charge the verification of the model. In
order to minimize the number of extra states to be created, we only create fake
transitions for the events involved in the property to be verified. For instance,
lets consider the following property on the Blind Auction example in figure 2.2:
propDCR : G(¬RevealCall ∨ ¬FBidCall) which basically expresses the fact that no
bids can be placed once the revealing window is opened (i.e., the first revealing bids
call happened). The application of this definition on this DCR graph with the aim of
verifying the property propDCR is shown in figure 5.7.
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Figure 5.6: Generalized CPN4DCR

5.3.3 CPN4DCR - Extension for DCR choreographies

In order to be able to verify properties on DCR choreographies, we need to take into
account the concept of roles in our CPN4DCR model. To do so, we mainly add a
place R, initially containing the set of ⟨initiator, receivers⟩ in the DCR choreography
model, linked to all transitions representing events.

Definition 5.3.5 (CPN4DCR3). Given a DCR choreography (G,R) where G =
(E,M,Act,→•, •→,±, l), the corresponding initial CPN4DCR model for G: CPN4DCR =
(P, T,A,Σ, V, C,G,E, I) as defined in definition 5.3.1, and its generalization G CPN4DCR =
(P ′, T ′, A′,Σ′, V ′, C ′, G′, E′, I ′), the extended CPN4DCR model for choreographies E CPN4DCR =
(P ′′, T ′′, A′′,Σ′′, V ′′, C ′′, G′′, E′′, I ′′) (depicted in figure 5.8) is defined s.t.:

• P ′′ = P ′ ∪ {R}

• T ′′ = T ′

• A′′ = A′ ∪ {(R, ti), ∀ti ∈ T} ∪ {(ti, R), ∀ti ∈ T}

• Σ′′ = Σ ∪ {CR, (CR × P(CR))}, where CR is a colour defined as a string type
(CR = STRING) to represent roles in DCR

• V ′′ = V ′ ∪ {VR, VSR}, with Type[VR] = CR and Type[VSR] = P(CR)

• C ′′ = C ′ ∪ {R→ (CR × P(CR))}
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Figure 5.7: Generalized CPN4DCR of the Blind Auction example

• G′′ = G′

• E′′ = E′ ∪ {a→ ⟨VR, VSR⟩, ∀a ∈ A′′ ∩ ({R} × T ) ∪ (T × {R})}

• I ′′ = I ′ ∪ {R → {ri,∀i ∈ [1..k]}, where each ri being a token representing the

initiator ans potential receivers of an event e ∈ E with k = |
⋃|E|

j=1 l(ej)|.

we further precise that ∀ti ∈ T representing an event ei in the DCR graph, the expres-
sion ⟨VR, VSR⟩ on the arcs connecting ti to R is defined such that ⟨VR, VSR⟩ = l(ei).

The application of this definition on the DCR choreography in figure 2.3 with the
same property as in the previous example in Figure 5.7 gives the CPN model shown
in figure 5.9.
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5.4 Conclusion

In this chapter, we achieved our objective Obj2 mentioned in Section 1.3 which
is providing a formal model for possible behavioural contexts that may accompany
the smart contracts. To do so, we have mainly considered two types of behavioural
contexts. The first is what we called completely free context, and which is used in
case of absence of a behavioural context for the smart contracts in question. In other
words, if the users have no idea on how they will be using their smart contracts, we
will consider this type of context and accordingly build a CPN model (CPN4Free)
to represent a free behaviour based only on the elements of the smart contracts to
be verified. The second type of context is what we called constrained context, which
is used when the users have restrictions on the way they intend to use their smart
contracts and can define this behaviour in the form of a DCR graph or choreography.
In this case, we define a CPN model (CPN4DCR) that would be built on the elements
of the smart contracts according to the provided DCR model. Regardless of the type
of context, by the end of this step we have a CPN model that will represent the level-0
model in the final HCPN to be generated as will be further explained in the following
chapters.
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6.1 Introduction

This chapter represents the third contribution of our work, which consists in the
third step towards our end-goal approach (Figure 6.1). With this contribution we
aim to achieve Obj3 which is part of the response to RQ5 and RQ6 . Herein we
are interested in the expression of the properties to be verified on the Solidity smart
contracts in question. In our PhD work, we essentially aim to propose an approach
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that allows the verification of contract-specific properties on smart contracts as it is
important to be able to specify the correctness of smart contracts depending on their
intended application, especially (but not only) if their behavioural context is known.
This does not, however, mean that the detection of vulnerabilities is irrelevant to
our work. For this reason, we propose an LTL formalization of six common Solidity
vulnerabilities to showcase the capability of our approach to be used to incidentally
detect the presence of vulnerabilities in Solidity smart contracts.
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Figure 6.1: Approach overview - Step 3

6.2 Vulnerabilities Through Examples

A Solidity smart contract may look like a JavaScript or C program syntax-wise, but
they are actually dissimilar since the underlying semantics of Solidity is different from
traditional programs. This naturally calls on more vigilance from programmers who
might be faced by unconventional security issues as vulnerabilities in smart contracts
seem to often stem from this gap between the semantics of Solidity and the intentions
of the programmer [24].

In the following we present two use cases to explain the vulnerabilities treated in
this work to provide a better understanding of how we verify them later.

One of the most widespread smart contract applications is delivering gambling
services. In fact, thanks to Blockchain’s decentralized nature and the transparency of
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transactions within it, players can have a clear view of the behaviour of the game and
therefore are led and incentivized to put their trust in the system which is determined
by the rules implemented by its smart contracts.

Our first Solidity example (Listing 6.1) is based on a published contract1 imple-
menting a lottery game. It has been tweaked to illustrate more vulnerabilities without
altering its purpose. A player participates in this game by sending an amount of ether
equal to the TICKET AMOUNT through playTicket(), which is then added to the
game’s pot. The winner is determined based on a random value calculated using
the block’s timestamp and the LottoLog is updated accordingly to keep track of the
winners. The winner then gets paid by calling getPot() and the game’s host (bank)
can start a new round of lotto using RestartLotto(). This contract may seem fair to
inexperienced Solidity developers, but it actually presents multiple vulnerabilities as
we will later explain.

1 contract EtherLotto {

2 address public bank;

3 struct GameRecord {

4 address winner;

5 uint amount;

6 }

7 uint8 gameNum;

8 GameRecord [] LottoLog;

9 bool won;

10 uint constant TICKET_AMOUNT = 10;

11 uint constant FEE_AMOUNT = 1;

12 uint public pot;

13 function EtherLotto () {

14 bank = msg.sender;

15 won = false;

16 gameNum = 0;

17 }

18 function RestartLotto () {

19 require(msg.sender == bank);

20 require(won == true);

21 require(pot == 0);

22 won = false;

23 gameNum += 1;

24 }

25 function playTicket () payable {

26 require(msg.value == TICKET_AMOUNT);

27 require(won == false)

28 pot += msg.value;

29 uint random = uint(sha3(block.timestamp)) % 2;

30 if (random == 0) {

31 bank.call.value(FEE_AMOUNT)("");

32 won = true;

33 GameRecord gr;

34 gr.winner = msg.sender;

1https://etherscan.io/address/0xa11e4ed59dc94e69612f3111942626ed513cb172

https://etherscan.io/address/0xa11e4ed59dc94e69612f3111942626ed513cb172
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35 gr.amount = pot - FEE_AMOUNT;

36 LottoLog[gameNum] = gr;

37 }

38 }

39 function getPot () {

40 require(won == true);

41 if(msg.sender == LottoLog[gameNum ]. winner){

42 msg.sender.call.value(LottoLog[gameNum ]. amount)("");

43 pot = 0;

44 }

45 }

46 }

Listing 6.1: Solidity example: EtherLotto.sol

1 contract MaliciousContract {

2 uint ticket;

3 EtherLotto el = EtherLotto (0 xbf0061dc ...);

4 EtherMilestone em = EtherMilestone (0 xc50164dfa ...);

5 function playLotto () {

6 ticket = msg.value;

7 el.playTicket.value(ticket)();

8 el.getPot ();

9 }

10 function playMilestone () {

11 em.play.value (1)();

12 }

13 function getRevenge ( ) {

14 selfdestruct(em);

15 }

16 function () payable {

17 el.getPot ();

18 }

19 }

Listing 6.2: A malicious smart contract in Solidity

We consider a second Solidity example2 (Listing 6.3) to emphasize on the harmful
effect the self-destruction vulnerability (see next subsection) can have on a contract. It
implements another gambling game whereby a player sends 1 ether to the contract by
calling play() in hopes to be the one to hit a milestone. Once the game is over (i.e., the
finalMileStone is reached) winners can claim their rewards through claimReward().

1 contract EtherMilestone {

2 uint public payoutMileStone1 = 6 ether;

3 uint public mileStone1Reward = 4 ether;

4 uint public payoutMileStone2 = 10 ether;

5 uint public mileStone2Reward = 6 ether;

6 uint public finalMileStone = 20 ether;

7 uint public finalReward = 10 ether;

2https://gist.github.com/vasa-develop/415a17c709d804a4d351485cd1b7c981

https://gist.github.com/vasa-develop/415a17c709d804a4d351485cd1b7c981
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8 mapping(address => uint) redeemableEther;

9 function play() public payable {

10 require(msg.value == 1 ether);

11 uint currentBalance = this.balance + msg.value;

12 require(currentBalance <= finalMileStone);

13 if (currentBalance == payoutMileStone1) {

14 redeemableEther[msg.sender] += mileStone1Reward;

15 }

16 else if (currentBalance == payoutMileStone2) {

17 redeemableEther[msg.sender] += mileStone2Reward;

18 }

19 else if (currentBalance == finalMileStone ) {

20 redeemableEther[msg.sender] += finalReward;

21 }

22 return;

23 }

24 function claimReward () public {

25 require(this.balance == finalMileStone);

26 require(redeemableEther[msg.sender] > 0);

27 redeemableEther[msg.sender] = 0;

28 msg.sender.call.value(redeemableEther[msg.sender ])("");

29 }

30 }

Listing 6.3: Solidity example: EtherMilestone.sol

6.2.1 Integer Overflow/Underflow:

Due to Solidity’s lack of safeguards on mathematical operators, errors such as over-
flows and underflows may occur as a result of violation of value limitations of integer
data types. For instance, the uint8 gameNum variable in the EtherLotto contract can
be the source of such a vulnerability when the game exceeds 256 rounds. In fact, at
the 257th round, and due to Solidity’s wrapping in two’s complement representation
for integers, gameNum will be set back to 0, causing data errors/overwriting into the
critical LottoLog variable.

6.2.2 Reentrancy:

This is by far the most notorious vulnerability since it led to the infamous DAO
attack. An attack of this type can take several forms (e.g, we can talk about a single
function reentrancy attack or a cross-function reentrancy attack), but the main idea
behind it is that a function can be interrupted in the middle of its execution and
then be safely called again before its initial call completes. Once the second call
completes, the initial one resumes correct execution. The simplest example is when
a smart contract uses a variable to keep track of balances and offers a withdraw
function. A vulnerable contract would make a transfer of funds prior to updating
the corresponding balance which an attacker can take advantage of by recursively
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calling this function and eventually draining the contract. This can be illustrated
by a call to the function playLotto() with a value of 10 in the MaliciousContract
(Listing 6.2) which would start by playing a ticket in the EtherLotto contract by
invoking its playTicket() function and then attempting its getPot() function. In the
instance where attacker’s ticket is a winning one and the contract holds more than
twice the amount of the pot in that round, a reentrancy attack can happen. In fact,
by sending the jackpot to the winner (line 17 in Listing 6.1), the EtherLotto contract
invokes the fallback function of the MaliciousContract, which is an unnamed function
used to receive data or Ether. This is where the control flow is handed over to the
latter contract whose fallback function recursively calls getPot(), which is allowed
since the conditions on its execution are still valid, until the EtherLotto contract’s
balance is less than the current pot ’s amount.

6.2.3 Self-Destruction:

The selfdestruct(address) function, when implemented in a contract, removes all byte-
code from the contract’s address to render it inaccessible and sends all its ether to
the specified address. The latter can be another contract’s address, in which case, the
ether transfer happens forcibly, regardless of the recipient’s code (i.e., without invok-
ing its fallback function). Getting back to our second example EtherMilestone, we
note the use of this.balance in lines 8 and 16. A player who missed a milestone, could
vengefully send an amount of ether using selfdestruct() (e.g., function getRevenge()
in MaliciousContract) as to push the contract’s balance above the finalMileStone,
locking all of the contract’s ether and denying the winners who had already reached
some milestones their rewards since claimReward() would revert.

6.2.4 Timestamp dependence:

Since the execution on a Blockchain needs to be deterministic for all the miners to get
the same results and reach a consensus, users usually resort to block-related variables
such as timestamp as a source of entropy. Sharing the same view on the Blockchain,
miners would generate the same result, albeit being unpredictable. Even though this
seems to be safe, it gives the miners a small room for manipulation given that they
can choose a timestamp within a certain range for the new block, which gives them
the possibility to tamper with the results and put some bias towards a certain user
for example. Such a vulnerability can be exploited by any contract relying on a time
constraint to determine its course of action. In our EtherLotto example, the function
playTicket() is timestamp-dependent.

6.2.5 Skip Empty Literal:

The source of this vulnerability is the way the encoder of the Solidity compiler treats
the arguments in a function call. In fact, when a function call’s argument is an empty
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string literal, it affects the following arguments which are shifted to the right by 32
bytes. This results in a function call with corrupted data.

6.2.6 Uninitialized Storage Variable:

Solidity stores state variables sequentially. So in EtherLotto, the variable bank is
stored in slot 0. Since Solidity uses storage for complex data types like structs by
default when declared as local variables, they become pointers to storage. Because
gr is uninitialized (line 12 in Listing 6.1), it would actually point to the same slot
as bank. When setting gr.winner to the first winner’s address, this is effectively
changing the address stored in bank to the winner’s, which results in an unexpected
behaviour by this contract. In our example, we present this vulnerability as an error
unintentionally introduced by the contract’s owner and unintentionally exploited by
the first winner. It can, however, be intentionally injected in a contract’s code or
intentionally exploited by a user, as is the case in the OpenAddressLottery3 honeypot.

6.3 Expressing Vulnerabilities in LTL

In the following, Mf
si designates the CPN sub-model corresponding to function f in

smart contract si. We note that sometimes we use parameterized propositions to
indicate that they are applied to an unspecified aggregated transition. Concretely,
such propositions need to be explicitly defined for each transition to be verified4.

6.3.1 Integer Overflow/Underflow

In our CPN model, we define correspondences between the types used in the Solidity
language and those offered by helena so that they cover the same ranges. The model
checker is therefore able to detect when the smart contract contains an out-of-range
expression. It does not, however, pinpoint the source of the anomaly, so the user does
not have much information to go on to track it and try to correct it. To overcome
this deficiency, we propose to model integer overflows/underflows as a safety LTL
property that can be verified on a specific variable x:

IUOx = □¬xIsOutOfRange

Where xIsOutOfRange is a proposition that evaluates to true if the value of x is
not included in the range of its type which we delimit by defining lower and higher
thresholds (minThreshold and maxThreshold respectively).

xIsOutOfRange =(x < minThreshold)

∨ (x > maxThreshold)
3https://etherscan.io/address/0x741f1923974464efd0aa70e77800ba5d9ed18902
4Not to be confused with first order predicates

https://etherscan.io/address/0x741f1923974464efd0aa70e77800ba5d9ed18902


106 Expression of Properties to be Verified using Linear Temporal Logic

6.3.2 Reentrancy

This vulnerability is related to functions that contain instructions responsible for
Ether transfer, and therefore is applied w.r.t a function containing a sending state-
ment. Given such a function, we propose two LTL properties. The first is a safety
property defined as follows:

Reentrancy
Mf

si
= □¬reentrant

Mf
si

Where reentrant
Mf

si
is true if the necessary condition under which a reentrancy

vulnerability can be detected in the function f in the smart contract si is valid. This
condition can only be defined when the user indicates the variable x serving as a record
for balances and whose assignment should be watched. Such a condition expresses
the presence of a sending statement which is not preceded by an assignment to x:

reentrant
Mf

si
= (¬XAssignment)U Sending

Where XAssignment is true when a statement is an assignment to the variable x and
Sending is true when a statement is a sending one. A vulnerability is detected when
Reentrancy(tfsi) evaluates to false. This property is used when we only have the code
of the smart contract to be verified (i.e., a totally free behaviour). If the code of the
interacting contract sj is available, we propose the following LTL property:

Reentrancy
Mf

si
=SendingTosj → e□((¬SendingTosj )

U endOfFallbacksj )

Using this property we can verify that once the sending statement is executed (SendingTosj
is true), it cannot be executed again until the fallback function of the receiving con-
tract has finished (endOfFallbacksj is true) i.e., no reentrancy breach can happen.

6.3.3 Self-destruction

It is checked by detecting the presence of a test containing this.balance in the code of
the function:

selfDestruction
Mf

si
= ¬testOnBalance

Mf
si

This detection process can be further enhanced when the code of the interacting
smart contract is available. In that case, given a function g in sj that contains a
self destruction instruction directing Ether to si, a function f in si is considered safe
against this vulnerability if it does not contain a test on this.balance or if g cannot
be executed prior to f under inspection, which is expressed by the LTL property:

selfDestruction
Mf

si
=(¬testOnBalance

Mf
si
)

∨ (¬selfDestructMg
sj
U start

Mf
si
)
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We note that even though these properties can detect the presence of the self destruc-
tion vulnerability, more information on what the function exactly does needs to be
provided in order to be able to assess its harmfulness on the execution. This can still
be checked by evaluating a contract-specific property.

6.3.4 Timestamp Dependence

In order to check for this vulnerability, we propose an LTL property to detect the
accessibility of block.timestamp or its alias now :

TSD
Mf

si
= □¬TimestampDependantStatement

Where TimestampDependantStatement is true if a timestamp is used in a statement.
Similarly to the self destruction vulnerability, the presence of timestamp dependence
can be detected using the proposed property, but to check the harm it may incur a
more appropriate contract-specific property needs to be evaluated.

6.3.5 Skip Empty String Literal

This can be checked for a function f containing function calls by verifying that for any
function call with n arguments {a1, .., an} no empty string is passed as an argument
(except for the last one an). We express this as follows:

SkipEmpty
Mf

si
= □¬FunctionCall

Where FunctionCall is true when the statement is a function call with an empty
argument ai (i ̸= n).

6.3.6 Uninitialized Storage Variable

This is verified for a function f where a variable x of a complex type is defined, by
checking the following property:

UnintializedV ariable
Mf

si
= ¬readXUwriteX

Where readX is true when x is read in a statement and writeX is true when it is
assigned.

6.4 Conclusion

In this chapter, we achieved our objective Obj3 mentioned in Section 1.3 which is
the formal definition of well-known vulnerabilities. To do so, we have selected and
defined six common Solidity vulnerabilities, namely integer overflow/underflow, reen-
trancy, self-destruction, timestamp dependence, skip empty literal and uninitialized
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storage variable. We have then proposed a formalization for these vulnerabilities us-
ing Linear Temporal Logic. We recall that our main aim is to allow the verification of
LTL properties that reflect characteristics that depend on the smart contracts to be
verified. Through the formalization of these vulnerabilities in LTL, we prove that our
approach is also capable of detecting the presence vulnerabilities in Solidity smart
contracts.
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7.1 Introduction

This chapter represents the fourth contribution of our work, which consists in the
last step towards our end-goal approach (Figure 7.1). With this contribution we aim
to achieve Obj4 which is part of the response to RQ3 and RQ4 . Herein we are
interested in the generation of the final Hierarchical CPN model that will be passed
on to the model checker. We will furthermore explain how all of our contributions are
linked together to give rise to our full approach, and present our tool Solidity2CPN
which automates our approach while offering a user-friendly interface.

7.2 Generation of the Final Hierarhical Coloured Petri
Net Model

We recall that the end-goal of this PhD work is to implement a full approach for the
formal verification of Solidity smart contracts used in a BPM context. Our approach
comprises mainly two steps:

1. A pre-verification phase: consists in (i) transforming the smart contracts’ So-
lidity code into CPN sub-models corresponding to their functions and (i) trans-
forming the behavioural context specification into

109
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Figure 7.1: Approach overview - Step 4

2. A verification phase: consists in constructing a CPN model with regard to
an LTL property that can express: (i) a vulnerability in the code or (ii) a
contract-specific property, linking it to a CPN model representing the provided
behavioral context to be considered, and feeding it the model checking to verify
the targeted property.

More precisely, we opt for a hierarchical CPN model to represent the considered
smart contracts’ execution and interaction with respect to the provided behavioral
context specification. As shown in Figure 1.1, we represent each function of a smart
contract by an aggregated transition that encapsulates a CPN sub-model correspond-
ing to the internal workflow of the former. These sub-models are initially represented
disjointedly. In fact, our aim at this pre-verification phase is to get building blocks
for the hierarchical model that will be fed to the model checker. Then, given a behav-
ioral context specification and an LTL property to be verified, the final CPN model
is built by (1) linking the aggregated transition representing the targeted function to
the behavioral context’s model and (2) building a hierarchy by explicitly representing
function calls in the sub-model in question (if the checked property requires it). In
fact, function calls are initially abstracted and therefore represented by aggregated
transitions in the model (e.g., tfj[si] in Figure 1.1) under the assumption that they
do not present behavioral problems (deadlock-free and strong-livelock-free) which can
be separately verified for each function. Depending on the property to be verified, an
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aggregated transition may need to be unfolded if any of its corresponding function’s
instructions or variables are involved in this property, hence the multi-level hierarchy
in the model (e.g., tfj[si] inMfi[si] is hidden and replaced by its sub-modelMfj[si]). It
is kept folded otherwise (e.g., tfk[si] in Mfh[si]). This abstraction leads to a reduction
in the size of the final CPN model, and consequently (in general) a reduction in the
size of the state space the model checker needs to explore.

This unfolding mechanism is implemented by the following algorithm.

The unfoldTransition Algorithm

1: procedure unfoldTransition(ta;pin;pout)
2: Input: aggregated transition ta, input place pin, output place pout
3: Output: submodel replacement of transition ta

4: for t′ ∈ ta.submodel.inTransition do
5: replicate (arc from pin to ta) to t′

6: replicate (arc from •t[input] to ta) to t′
7: for p ∈ •ta[data] ∪ •ta[output] do
8: replicate (arc from p to ta) to t′

9: end for
10: end for
11: for t′ ∈ ta.submodel.outTransition do
12: replicate (arc from ta to pout) to t

′ with the placeholder inscription replaced
by values from •t′[cf ]

13: end for
14: hide transition ta and all arcs linked to it
15: end procedure

7.3 Application of the Approach

The full application of our end-to-end approach consists in linking the different contri-
butions presented in the previous chapters of this manuscript. Given a set of Solidity
smart contracts to be verified, a behavioural context specification that describes the
way they are intended to be used, a property that we want to check for, we start
by applying our transformation algorithms presented in Chapter 4 on the functions
of the smart contracts to generate the different building blocks of the final HCPN
model. Then, depending on the type of the provided context specification, we apply
the definitions given in Chapter 5 to generate what we call the level-0 CPN model.
A hierarchical CPN model is then built upon this initial level-0 CPN model following
the unfolding mechanism previously explained in Section 7.2 and using the previously
generated building blocks. The hierarchy of this HCPN is derived from the property
to be verified, which can be a contract-specific property or a predefined property
dedicated to the detection of a vulnerability in the smart contracts as per the for-
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malizations given in Chapter 6. Once all these steps are carried out, the verification
of the targeted property on the contracts would come down to its verification on the
final HCPN model by passing the latter to a model checker. For model checking, we
chose Helena [45] which is a High LEvel Nets Analyzer available as a command line
tool. It offers explicit model checking support for an on-the-fly verification of state
and LTL properties over CPN models described in Helena’s specification language.

We have automated our approach through a web application that we present in
the following section.

7.4 The Solidity2CPN Tool for Smart Contracts Verifi-
cation

We have implemented our approach through a web application1. The front-end was
developed in Javascript with the VueJS framework. As for the back-end, it was
developed using the python Django platform. The different modules have been im-
plemented in C++.

7.4.1 Tool Architecture

As shown in figure 7.2, the tool has basically three inputs:

• Solidity Smart contracts: this consists in the .sol file(s) of the Smart contract(s)
to be verified.

• Context DCR/CPN: it is a representation of the behavioral context of the pro-
vided smart contract(s). It can be either a declarative representation (i.e., a
DCR graph/choreography), or an imperative representation (i.e., a CPNmodel).
This input is optional.

• Property to verify: this is the property the user would like to verify on their
smart contract(s). This property can either be (i) a Solidity vulnerability, or
(ii) a property specific to the smart contract(s).

The tool basically consists of seven modules:

• Solidity2CPN: This is the module responsible for the generation of the CPN
sub-models corresponding to the functions of the smart contracts given as input.

• DCR2CPN: This is the module responsible for the generation of the CPN sub-
model corresponding to the DCR representation of the context (optionally)
given as input.

1https://depot.lipn.univ-paris13.fr/soliditycpn/soliditycpn

https://depot.lipn.univ-paris13.fr/soliditycpn/soliditycpn
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Figure 7.2: Architecture of the Solidity2CPN tool

• Generate Free Context CPN: This is the module responsible for the generation
of the CPN sub-model corresponding to a free context. In other words, it is the
module invoked when the user has no constraints on its contracts (i.e., does not
provide a representation for the context).

• LTL Generation: This is the module responsible for the transformation of the
property to be checked, given by the user, and expressed using the elements of
the input artifacts (i.e., the contracts and possibly the context), into an LTL
property expressed using the elements of the CPN sub-models generated by the
other modules, and written according to the Helena model checker specification
language.

• HCPN Generation: This is the module responsible for the generation of the final
hierarchical CPN model. Initially based on the CPN model of the context, this
module unfolds (i.e., replaces an aggregate transition by a CPN sub-model) the
transitions concerned by taking into account the LTL property to be checked
and using the corresponding CPN sub-models of the smart contracts functions.

• Model Checking: This is the module responsible for invoking the Helena model
checker with the final HCPN model and the LTL formula to be checked as
inputs.



114 Application and Implementation of our Approach

• Backtracking: This is the module responsible for the interpretation of the result
returned by Helena. Indeed, in the case where the model does not satisfy the
verified property, Helena returns a counter-example in the form of a sequence
of transitions and firings. This sequence should then be transformed into an
execution trace expressed on the elements of the smart contracts and the context
(if it exists) previously provided as input so that the user can understand,
and interpret the verification result and possibly correct his smart contracts
accordingly. We note that at the time of writing, this module has not been yet
implemented.

7.4.2 Tool Workflow

The tool’s workflow can be described by a typical scenario as follows:

• The user begins a verification session by selecting, from his list of smart con-
tracts, the contract(s) concerned by the verification (Fig. 7.3).

Figure 7.3: Smart contracts selection interface

• If the user does not yet have contracts in his list, or if the contract(s) concerned
by this verification session do(es) not appear on it, he has the possibility of
adding it/them by uploading the corresponding .sol file(s).

• The user is then prompted to select a context for his selected contract(s). As
was the case for the selection of contracts, the user can either select from his
list of contexts or upload a file (.xml in the case of a DCR context, or .lna in
the case of a CPN context). Since the context is an optional artifact, the user
may as well skip this step (Fig. 7.4).
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Figure 7.4: Context selection interface

• The user is then invited to select the type of property he would like to verify
on his contracts. This property can be:

– a property corresponding to a vulnerability. In this case, the tool offers dif-
ferent interfaces to guide the user to provide the necessary information for
the selected vulnerability among the following six supported vulnerabilities
(Fig. 7.5):

1. integer underflow/overflow

2. reentrency

3. self-destruction

4. timestamp-dependance

5. skip empty string literal

6. unintialiazed storage variable

– a property specific to the contract(s) to be check (Fig. 7.6). In this case,
the tool offers the user two possibilities:

∗ expressing the property using predefined LTL templates for standard
and common properties where the user has to only fill predefined fields
with contract information (e.g., functions, variables, etc). We note
that at the time of writing, this part has not been yet implemented.
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Figure 7.5: Vulnerability selection interface

∗ expressing the property freely (without template) in LTL. In this case,
the user needs to be familiar with the syntax and semantics of LTL.

Figure 7.6: Contract-specific property setting interface (without a template)

• The user gives some additional information (e.g., the number of users of his con-
tracts, their balances, etc.) to configure the final verification session (Fig. 7.7).
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Figure 7.7: Configuration interface

• The user launches the generation of the target model (the final hierarchical CPN
as well as the LTL property expressed in the specification language of Helena)
(Fig. 7.8).

Figure 7.8: Generation interface
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• The user launches the verification of his contract(s) (the tool invokes Helena
with the artifacts generated in the previous step) (Fig. 7.9).

Figure 7.9: Verification interface

• The tool displays the verification result (Fig. 7.10).

Figure 7.10: Results interface

• The user can thus initiate another verification session.
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7.5 Conclusion

In this chapter, we achieved our objective Obj4 mentioned in Section 1.3 which is
providing a full approach to formally verify smart contracts while supporting the pos-
sibility of behavioural context specifications. To do so, we have presented how the
generation of the final Hierarchichal CPN model is implemented through the unfold-
ing mechanism for which we have proposed a generic algorithm. The final step that
concludes our approach is then too apply model checking on the generated HCPN
model w.r.t to the specified LTL property. We have also presented our graphical So-
lidity2CPN tool which automates our end-to-end approach and provides user-friendly
interfaces to bring our approach closer to as a wide a range of users as possible.
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Being an important pillar for Blockchain technology, smart contracts need to
provide certain guarantees in terms of correctness to support its foundation built on
trust. Formal approaches for the verification of Solidity smart contracts have been
proposed, but they are generally designed to target specific vulnerabilities known in
the literature (e.g., reentrancy) which have been reported to be the root of some
attacks or malfunctions. Checking the absence of such vulnerabilities in a smart
contract does not guarantee its correctness as a faulty behaviour may stem from a flaw
specific to that contract. Moreover, the need to verify contract-specific properties has
proven increasingly necessary in the light of the expanding reach of smart contracts
in many application fields. In fact, the combination of the Blockchain technology and
the BPM domain has been an evident step, especially considering the assets that the
former brings to the latter. It is still crucial, however, to guarantee the correctness
of the smart contracts involved in this association in order to ensure its safety. To
the best of our knowledge, there are no studies that focused on the verification of
smart contracts in the context of BPM despite the fact that Business processes can
be intuitive representations to describe the context in which smart contracts are used.

Our proposed approach comes as an effort to bring a solution to this research
issue of formal verification of Solidity smart contracts in a BPM context by providing
a way to formally model contracts along with their behavioural context specification
(while also considering the case where no such specification is provided). We do that
by both checking for vulnerabilities in the code and offering the possibility to ex-
press additional contract-specific properties to check. Moreover, we take into account
the context in which the smart contracts to be verified are executed as a behavior
specification.

In this manuscript, we presented in details our contributions to tackle the prob-
lems specified in Section 1.2. In this concluding chapter, we summarize our work in
section 8.1 and present our future research directions Section 8.2.
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8.1 Fulfillment of Objectives

The ultimate goal of this PhD work was to provide a solution that would allow Solid-
ity developers of the BPM community to make sure that their smart-contracts-based
applications are correct. This correctness characterization can be in the form of vul-
nerabilities detection. In fact, the semantics of Solidity can be at times obscure even
to domain experts, and many documented attacks on Blockchain platforms prove that
seemingly-correct smart contracts can be susceptible to malicious manipulations. The
correctness of smart contracts can also be defined as some contract-specific property
that is specific to the use case at hand. This is especially important when the de-
signers have some knowledge on the context in which their smart contracts will be
used and are able to formulate properties that they would expect their application
to satisfy/hold. Our solution, despite being oriented to business process designers,
can also be used for the mere objective of verifying smart contracts in general (i.e.,
without having to provide a behavioural context).

To achieve such a goal, we proposed a model-checking-based approach using
Coloured Petri Net as a formalism for the representation of smart contracts and
their behavioural contexts and Linear Temporal Logic to express properties on the
modeled Blockchain-based application. To do so, we had to divide our problem into
a set of challenges and therefore touch on a number of milestones.

The first contribution aimed to provide a formal representation for Solidity smart
contracts in the form of Coloured Petri Nets. This choice of formalism emanated
from its capability to represent both control- and data-flows of systems which is an
important aspect to consider when aiming to verify contract-specific properties. To
achieve this aim, we proposed CPN patterns for each type of statement of the Solidity
language along with well-defined algorithms that would serve for the automation of
the transformation Solidity code into CPN.

The second contribution had as a goal the formalization of the behavioural speci-
fications that may describe the context in which the smart contracts to be verified are
to be used. Our approach being oriented towards smart contracts used in the BPM do-
main, we focused on declarative representations that Business process designers may
use to express constraints on their Blockchain-based applications, especially consid-
ering the scarcity of studies on formal verification of such models. We singled out
DCR graphs and choreographies as our main representation of choice for a constrained
context as they are one the modeling techniques that are gaining popularity in the
field of BPM, and proposed semantically-equivalent formal CPN models to integrate
them in our ultimate solution. To keep our approach as generic as possible, we also
proposed a CPN model, dubbed as a free context in our work, that would be used
as a context in case none has been provided. This model is built on the elements
of the smart contracts to be verified and makes no assumptions on their behaviour,
therefore it can be used in our approach as a basis for the general verification of smart
contracts.
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The third contribution had in view the formalization of vulnerabilities. Having es-
tablished that the detection of flaws in Solidity smart contracts is not to be neglected
as part of checking for their correctness, we selected six of the commonly-present
vulnerabilities in Solidity to target in our work. Since our approach is based on the
verification of Linear Temporal Logic properties, we represented the selected vulner-
abilities in the form of different LTL formulae, the verification of which would enable
designers to detect the corresponding vulnerabilities in their code. We note that
in our work, the six vulnerabilities that we considered are given as mere examples
to prove that the expressiveness of LTL formulae can cover vulnerabilities from the
literature even though our focus is on the verification of contract-specific properties.

The last contribution sought to put all the pieces of our approach together to
achieve our final goal. This consisted in the generation of the final hierarchical CPN
model by 1 generating the different CPN sub-models corresponding to the smart con-
tracts functions as per the first contribution, 2 generating the level-0 CPN model de-
pending on the provided behavioural context specification (or lack thereof) as per the
second contribution, 3 the definition of the properties to be verified on the Blockchain-
based application as per the third contribution, and 4 using the level-0 CPN model
as the initial start and building a hierarchy upon it based on the property to verify
and using the previously-generated sub-models.
To prove the feasibility of our approach we have developed a fully-fledged tool that
provides users with a graphical interface that allows them to specify the property
to be verified on the smart contracts, be it contract-specific or corresponding to a
common vulnerability, as well as to potentially indicate the behaviour according to
which the contracts are used as a BP specification. The transformation of the smart
contracts and their behaviours are carried out in the background followed by the
model checking phase which is performed by transparently invoking Helena and re-
turning the obtained results. The users, oblivious to the running mechanisms behind
the scenes, therefore benefit from a seamless experience that allows them to formally
verify their smart contracts without any experience requirements on formal modelling
nor model checking.

8.2 Future Work

Our work opens several research perspectives to accomplish in short and middle terms.
The most immediate perspective is rather technical and concerns our Solidity2CPN
tool. Then we intend to investigate the possibility of extending our work by focusing
on the integration of the Blockchain technology with other domains, mainly that of
the Internet of Things (IoT). Lastly, we will work on improving the performance of
our approach by exploring the Helena model checker.

Finishing up the Solidity2CPN tool. As was mentioned in Chapter 7, there are
still two parts that we are currently working on implementing for our tool, namely



124 Conclusion an Future Work

adding the support of template-based LTL properties along with the necessary graph-
ical interfaces for that, and the Backtracking module. For the first part, we need to
identify standard and/or common properties that would be interesting to check for
our target users and then define them in the form of LTL formulae that could be
“configured” or “set up” with elements of the smart contracts in question. We will
then design corresponding graphical interfaces to include such properties as templates
in our tool. For the second part, we need to implement a module that would trans-
form the counter example returned by Helena (in case of violated property), which
is a sequence of states and fired transitions, into a result that the users can easily
interpret as an execution trace of their smart contracts.

Supporting IoT as a behavioural context. Just like BPM, the integration of
the Blockchain technology with the IoT has been a hot topic recently [37]. We intend
to extend our current approach for the verification of Blockchain-based IoT appli-
cations by additionally supporting behavioural context specifications provided as an
IoT design, in particular as a Node-Red [7] application. To do that, we will transform
Node-Red applications that use smart contracts to handle and manipulate data from
IoT devices into CPN models, and apply the same strategy presented in our work to
verify the correctness of such applications.

Improving Helena To further improve the performance of our approach, we plan
to work on Helena’s model checker by embedding it with an extension to an existing
technique based on symbolic observation graphs (SOG) [60] previously developed to
deal with the state space explosion problem in regular PNs and adapting it to CPNs.
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[46] Fahland, D., Lübke, D., Mendling, J., Reijers, H.A., Weber, B., Weidlich, M.,
Zugal, S.: Declarative versus imperative process modeling languages: The issue
of understandability. In: Halpin, T.A., Krogstie, J., Nurcan, S., Proper, E.,
Schmidt, R., Soffer, P., Ukor, R. (eds.) Enterprise, Business-Process and In-
formation Systems Modeling, 10th International Workshop, BPMDS 2009, and
14th International Conference, EMMSAD 2009, held at CAiSE 2009, Amster-
dam, The Netherlands, June 8-9, 2009. Proceedings. Lecture Notes in Business
Information Processing, vol. 29, pp. 353–366. Springer (2009)

[47] Gaaloul, W., Bhiri, S., Rouached, M.: Event-based design and runtime verifi-
cation of composite service transactional behavior. IEEE Trans. Serv. Comput.
3(1), 32–45 (2010)

[48] Garavel, H., ter Beek, M.H., van de Pol, J.: The 2020 expert survey on formal
methods. In: ter Beek, M.H., Nickovic, D. (eds.) Formal Methods for Industrial

https://github.com/SilentCicero/solint


Bibliography 129

Critical Systems - 25th International Conference, FMICS 2020, Vienna, Austria,
September 2-3, 2020, Proceedings. Lecture Notes in Computer Science, vol.
12327, pp. 3–69. Springer (2020)

[49] Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verifica-
tion framework. In: Computer Aided Verification - 27th International Confer-
ence, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part
I. pp. 343–361 (2015)

[50] Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: Honda, K., Mycroft, A. (eds.)
Proceedings Third Workshop on Programming Language Approaches to Con-
currency and communication-cEntric Software, PLACES 2010, Paphos, Cyprus,
21st March 2010. EPTCS, vol. 69, pp. 59–73 (2010)
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