
Blockchain-Based Business Processes:
A Solidity-to-CPN Formal Verification

Approach

Ikram Garfatta1,2(B), Käıs Klai2, Mahamed Gräıet3,4, and Walid Gaaloul5

1 University of Tunis El Manar, National Engineering School of Tunis, OASIS,
Tunis, Tunisia

2 University Sorbonne Paris North, LIPN UMR CNRS 7030, Villetaneuse, France
ikram.garfatta@lipn.univ-paris13.fr

3 Higher Institute for Computer Science and Mathematics, University of Monastir,
Monastir, Tunisia

4 National School for Statistics and Information Analysis, Rennes, France
5 Institut Mines-Télécom,Télécom SudParis, UMR 5157, SAMOVAR, Évry, France

Abstract. With its span of applications widening by the day, the tech-
nology of Blockchain has been gaining more interest in different domains.
It has intrigued many investors, but also numerous malicious users who
have put different Blockchain platforms under attack. It is therefore an
inescapable necessity to guarantee the correctness of smart contracts
as they are the core of Blockchain applications. Existing verification
approaches, however, focus on targeting particular vulnerabilities, sel-
dom supporting the verification of domain-specific properties.

In this paper, we propose a translation of Solidity smart contracts
into CPNs (Coloured Petri nets) and investigate the capability of CPN
Tools to verify CTL (Computation Tree Logic) properties.

Keywords: Blockchain · Formal verification · Smart contract ·
Solidity · Coloured Petri nets · CTL properties

1 Introduction

Within the span of the two last decades, many advances have been made in the
world of Blockchain, allowing this technology to expand its reach to a myriad
of application domains including Business Process Management (BPM) [13]. A
Blockchain platform can indeed provide a reliable execution of business processes
(BPs) even within a trustless network, especially thanks to the concept of smart

Supervised by Käıs Klai, University Sorbonne Paris North, LIPN UMR CNRS 7030,
Villetaneuse, France, and Mahamed Gräıet Higher Institute for Computer Science and
Mathematics, University of Monastir, Monastir, Tunisia and National School for Statis-
tics and Information Analysis, Rennes, France.
Co-directed by Walid Gaaloul, Institut Mines-Télécom,Télécom SudParis, UMR 5157,
SAMOVAR, Paris, France.

c© Springer Nature Switzerland AG 2021
H. Hacid et al. (Eds.): ICSOC 2020 Workshops, LNCS 12632, pp. 47–53, 2021.
https://doi.org/10.1007/978-3-030-76352-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76352-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-76352-7_7


48 I. Garfatta et al.

contracts. In a BPM context, a smart contract can define business collaborations
in general and inter-organizational BPs in particular. In fact, smart contracts are
pieces of script code that act like autonomous software agents, used to enforce
management rules on the execution of transactions on the Blockchain. They are
stored on and executed by the Blockchain and therefore inherit its characteris-
tics, particularly its immutability. This same feature can, however, turn into a
weak spot for such contracts. In fact, as a smart contract cannot be altered once
it has been deployed on the Blockchain, it cannot be corrected either, which
makes verifying its correctness prior to its deployment an indispensable neces-
sity. Furthermore, the correctness verification is an important aspect for the
design of blockchain-based BPs. The assessment of such processes involves both
requirements validation and consistency.

The main long-term objective of this thesis is therefore to develop an app-
roach that allows to construct correct blockchain-based BPs. In this paper, we
present our progress for the first milestone towards this goal, which we define
as the verification of smart contracts in a general context. We are interested in
Ethereum smart contracts as it is currently the second largest cryptocurrency
platform after Bitcoin besides being the inaugurator of smart contracts, and
particularly those written in Solidity [1] as it is the most popular language used
by Ethereum. The contribution described herein is a first step towards a formal
verification approach based on CPNs [7] for Solidity smart contracts.

Existing studies on the formal verification of smart contracts follow two
main streams. The first group of studies are based on theorem proving [2–4].
In this case, the verification is not automated and requires the user’s expertise
in the manipulation of the used theorem prover as well as manual intervention
in discharging proofs. The second group of studies are based on symbolic model
checking coupled with complementary techniques such as symbolic execution and
abstraction [5,8,11,12,14]. In order to use symbolic execution to generate the
traces that would be used for the verification, the proposed approaches usually
use under-approximation (e.g., in the form of loop bounds) which means that
critical violations can be overlooked. This explains the presence of false negatives
and/or positives in their reported results. We also note that most of the existing
studies target specific vulnerabilities in smart contracts, and few are those that
allow expressing customizable properties, in which case they are control flow-
related properties. In fact, none of these studies target data-related properties.
It is worth mentioning that most of the proposed approaches operate on the
EVM bytecode rather than on the Solidity code because of the latter’s lack of
formal semantics. This, however, results in loss of contextual information, and
consequently limits the range of properties that can be verified on the contract.

To overcome these shortcomings, we propose an algorithm for the translation
of a Solidity smart contract into a hierarchical CPN model over which CTL
properties can be verified. This work can easily be integrated as an extension
layer into existing studies that rely on the translation of BP models into smart
contracts as in [10] which generates Solidity code from models written in BPMN
(Business Process Model and Notation), to verify their output and therefore
check the correctness of the initial BP models.



Blockchain-Based Business Processes 49

2 Solidity-to-CPN Translation

To illustrate our approach and prove its feasibility, we adapt the Blind Auction
example included in [1]. Figure 1 describes the workflow of the blind auction sys-
tem. For a full description of the use case, we refer the reader to the Solidity2CPN
document available at this repository1.

Bi
dd

er
Bi

dd
er

Au
ct

io
n 

Ho
ld

er
Au

ct
io

n 
Ho

ld
er

Place blinded 
bid

Receive 
blinded bids

Start
Auction

Blinded bid
+ deposit

Start Reveal

Receive 
revealed bids

End Reveal

Receive 
withdraw 
requests

End
Auction

Reveal bids Request 
withdrawal

Revealed
Bid + key

ACK ACK Withdrawal
request

Pending
returns

Bidding window Revealing window

Fig. 1. Blind auction workflow

The general idea of our approach is to start from a CPN model representing
the general workflow of the smart contract (level-0 model) and then to build
on it by embedding it with submodels representing the smart contract func-
tions (level-1 models). In a level-0 model, we distinguish the user’s behaviour
part which models the way users can interact with the system and the smart
contract’s behaviour part which represents the system. These two are linked
via communication places. Figure 2 shows the level-0 model of the previously
described blind auction use case.

We see a smart contract as a set of statements. A statement can be either a
compound, a simple or a control one. A simple statement can be an assignment,
a variable declaration, a sending or a returning statement. A control statement
can be a requirement, a selection or a loop (a for or a while loop).

2.1 Translation Algorithm

Our proposed algorithms are structured as follows:

– extendModel takes as input the level-0 CPN model and builds the extended
hierarchical model by by calling insertSubModel for each transition corre-
sponding to a function in the Solidity smart contract.

1 https://github.com/garfatta/solidity2cpn.

https://github.com/garfatta/solidity2cpn


50 I. Garfatta et al.

bid
Call

Full Bids

bid
ACK

BiddersBiddersBidders

Possible
Secret Keys

Possible
Secret Keys

Possible
Secret Keys

Possible
Bids

Possible
Bids

Possible
Bids

Last Bids
Log

Last Bids
Log

Last Bids
Log

reveal
Call

R1

reveal
ACK

withdraw
Call2

R2

withdraw
ACK

W1 W2

P02
P21P11

P12 P22
bid

Parameters
reveal

Parameters
reveal

Parameters

[bidValue > lastBid]

P01P01
withdraw

Parameters

bid
Revealing

close

reveal
F

Withdraw

finish

BiddingBidding

terminate
T

Possible
Deposits
Possible
Deposits
Possible
Deposits

BidderBidderBidder

withdraw
Call1

Communication 
places

Smart 
Contract 

behaviour

User’s 
behaviour

Fig. 2. Blind auction - level-0 model

– insertSubModel is responsible for replacing a transition by its correspond-
ing level-1 submodel and connecting it to the level-0 model.

– createSubModel is the main algorithm. It generates the level-1 submodel
for each transition by browsing the body of its corresponding function recur-
sively and creates CPN patterns according to the type of the processed state-
ment that interconnect to create the transition’s submodel.

2.2 Application on the Blind Auction Use Case

The application of the algorithm on the level-0 model of the Blind Auction use
case (see Fig. 2) yields a hierarchical CPN model whose level-1 submodels are
created by the execution of createSubmodel. Figure 3 shows the submodel
corresponding to transition withdraw in the level-0 model. The rest of the sub-
models can be found in the online Solidity2CPN document (See footnote 1).

F

p2
t1

T
T

F

F2

F2

T2
T2 p11t2

t4

t3

amount

withdraw
Parameters

P21

P22

Fig. 3. SubModel of transition withdraw



Blockchain-Based Business Processes 51

3 Smart Contract Verification via CPN Tools

Having established the CPN model for a smart contract, verifying properties of
the smart contract would come down to verifying properties on the CPN model.
We have implemented the CPN model for our Blind Auction use case using CPN
Tools which leverages explicit model checking techniques, and investigated its
potential in the verification of behavioural and contract-specific properties.

In Table 1 we present state space analysis statistics for different initial mark-
ing values. We note that the unprovided values mean that the state space genera-
tion had not finished after several hours of execution. This is due to the infamous
state space explosion problem associated with explicit state space exploration.

Table 1. State Space Analysis Results for different initial markings

Bidders 1 2 3 4 5 1 1 1

Possible bids 1 1 1 1 1 2 3 4

Possible secret keys 1 1 1 1 1 2 3 4

Possible deposits 1 1 1 1 1 2 3 4

State space Without hierarchy 4 s 4 s 6 s 252 s – 4 s 30 s –

generation time With hierarchy 5 s 5 s 10 s 1001 s – 5 s 74 s –

#Nodes Without hierarchy 24 235 3118 47621 – 484 19984 –

With hierarchy 44 583 9166 156117 – 1424 65513 –

#Arcs Without hierarchy 26 378 7106 145062 – 555 22980 –

With hierarchy 46 900 19784 446326 – 1545 70704 –

#Dead Without hierarchy 3 10 35 124 – 49 1999 –

Markings With hierarchy 3 10 35 124 – 49 1999 –

The state space report generated by CPN Tools allows the deduction of sev-
eral general behavioural properties. For instance, in our use case application, the
report confirms the boundedness of all the places of the modelled system. More
specific properties can be verified by elaborating CTL properties. For instance,
we can formulate a termination property to check the model’s capability to
always reach a terminal state (a dead marking) where certain conditions are met.
We include the definition of such a property in the Solidity2CPN document6.

4 Conclusion

The goal of our work is to propose a formal approach for the verification of smart
contracts. In this context, we propose in this paper a translation algorithm that
generates a hierarchical CPN model representing a given Solidity smart contract,
including both its control-flow and data aspects. CTL properties are then verified



52 I. Garfatta et al.

on the CPN model to check corresponding properties on the smart contract,
unrestrictedly to certain predefined vulnerabilities.

In view of the results presented in this paper, it may be concluded that CPN
Tools does not hold much potential for the verification of properties on CPN
models of smart contracts due to the state space explosion problem. We do prove,
however, that the idea of using CPNs as a representation formalism is promising
for it allows the consideration of the data aspect, and thus the formulation of
contract-specific properties. To overcome the encountered limitations, we intend
to investigate the potential of Helena [6] as an analyzer for High Level Nets. This
tool offers on-the-fly verification of LTL properties, which unlike the verification
of CTL properties offered by CPN Tools, does no always require the generation
of the whole state space. To further improve the tool’s performance, we also
intend to work on Helena’s model checker by embedding it with an extension to
an existing technique previously developed to deal with the state space explosion
problem in regular Petri nets [9] and applying it on CPNs.

References

1. Solidity documentation. https://solidity.readthedocs.io/en/latest/
2. Formal verification for solidity contracts - ethereum community forum, October

2015. https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-
contracts

3. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying ethereum smart
contract bytecode in isabelle/hol. In: Proceedings of the 7th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs, pp. 66–77 (2018)

4. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Pro-
ceedings of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, PLAS@CCS 2016, Vienna, Austria, 24 October 2016, pp. 91–96 (2016)

5. Chen, T., Li, X., Luo, X., Zhang, X.: Under-optimized smart contracts devour
your money. In: IEEE 24th International Conference on Software Analysis, Evolu-
tion and Reengineering, SANER 2017, Austria, 20–24 February 2017, pp. 442–446
(2017)

6. Evangelista, S.: High level petri nets analysis with helena. In: Ciardo, G., Daron-
deau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 455–464. Springer, Heidelberg
(2005). https://doi.org/10.1007/11494744 26

7. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of
Concurrent Systems, 1st edn. Springer, Heidelberg (2009). https://doi.org/10.
1007/b9511210.1007/b95112

8. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart
contracts. In: 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, 18–21 February 2018 (2018)

9. Klai, K., Poitrenaud, D.: MC-SOG: an LTL model checker based on symbolic
observation graphs. In: 29th International Conference Applications and Theory
of Petri Nets, PETRI NETS 2008, China, 23–27 June, Proceedings. pp. 288–306
(2008)

10. López-Pintado, O., Garćıa-Bañuelos, L., Dumas, M., Weber, I., Ponomarev, A.:
Caterpillar: a business process execution engine on the ethereum blockchain. Softw.
Pract. Exp. 49(7), 1162–1193 (2019)

https://solidity.readthedocs.io/en/latest/
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
https://doi.org/10.1007/11494744_26
https://doi.org/10.1007/b9511210.1007/b95112
https://doi.org/10.1007/b9511210.1007/b95112


Blockchain-Based Business Processes 53

11. Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, 24–28 October 2016, p. 254–269 (2016)

12. Mavridou, A., Laszka, A., Stachtiari, E., Dubey, A.: Verisolid: correct-by-design
smart contracts for ethereum. In: Financial Cryptography and Data Security -
23rd International Conference, St. Kitts and Nevis, 18–22 February 2019, p. 446–
465 2019)

13. Mendling, J., Weber, I.: Blockchains for business process management - challenges
and opportunities. EMISA Forum 38(1), 22–23 (2018)

14. Torres, C.F., Schütte, J., State, R.: Osiris: hunting for integer bugs in ethereum
smart contracts. In: Proceedings of the 34th Annual Computer Security Appli-
cations Conference, ACSAC 2018, PR, USA, 03–07 December 2018, p. 664–676
(2018)


	Blockchain-Based Business Processes: A Solidity-to-CPN Formal Verification Approach
	1 Introduction
	2 Solidity-to-CPN Translation
	2.1 Translation Algorithm
	2.2 Application on the Blind Auction Use Case

	3 Smart Contract Verification via CPN Tools
	4 Conclusion
	References




