Newer
Older

Camille Coti
committed
#include "profiling.h"
#include "tensormatrix.h"
#include "products.h"
namespace gi = GiNaC;
/*******************************************************************************
* Big multiplication *
*******************************************************************************/
gi::ex multiply_seq( tensor3D_t& T, matrix_int_t& J, int size ) { // simpler: same dimension everywhere
gi::ex Tens = 0;
int a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, d3;
gi::ex TAB, TABB, TABC, TABCC, TABCD, TABCDD;
gi::ex A;
int i, j;
i = 0;
j = 0;

Camille Coti
committed
const char timerA[] = "A";
const char timerB[] = "B";
const char timeradd[] = "add";
double timeA, timeB;
for( a1 = 0 ; a1 < size; a1++ ){
i=i+1;
// std::cout << "Tens: " << Tens << std::endl;

Camille Coti
committed
// printf("i = %d\n", i);

Camille Coti
committed
// printf("j = %d\n", j);
TAU_START( timerA );
A = T[a1][a2][a3];
/* Beyond this point, a2 and a3 are only used in the simplectic matrix */
for( b1 = 0 ; b1 < size ; b1++ ){
TAB = J[a1][b1];
for( b2 = 0 ; b2 < size ; b2++ ){
for( b3 = 0 ; b3 < size ; b3++ ){
/* Beyond this point, b1 is not used anymore */

Camille Coti
committed
TABB = TAB * A*T[b1][b2][b3];
for( c1 = 0 ; c1 < size ; c1++ ){
for( c2 = 0 ; c2 < size ; c2++ ){
TABC = TABB * J[a2][c2];
for( c3 = 0 ; c3 < size ; c3++ ){
TABCC = TABC * T[c1][c2][c3] * J[b3][c3] ;
for( d1 = 0 ; d1 < size ; d1++ ){
TABCD = TABCC * J[c1][d1];
for( d2 = 0 ; d2 < size ; d2++ ){
TABCDD = TABCD * J[b2][d2];
for( d3 = 0 ; d3 < size ; d3++ ){
TAU_START( timeradd );
t_start = rdtsc();
Tens = Tens + TABCDD * T[d1][d2][d3]*J[a3][d3];
t_end = rdtsc();
TAU_STOP( timeradd );

Camille Coti
committed
#ifdef TAUPROF
// std::cout << "add " << getTimeSpent( timeradd ) << " len " << Tens.nops() << std::endl;
printf( "add %lf %lu len %d\n", getTimeSpent( timeradd ), t_end - t_start, Tens.nops() );

Camille Coti
committed
// std::cout << Tens << std::endl;

Camille Coti
committed
#endif // TAUPROF
}
TAU_STOP( timerB );

Camille Coti
committed
#ifdef TAUPROF
std::cout << "B " << getTimeSpent( timeradd ) << " len " << Tens.nops() << std::endl;

Camille Coti
committed
#endif // TAUPROF
TAU_STOP( timerA );

Camille Coti
committed
#ifdef TAUPROF
std::cout << "A " << getTimeSpent( timeradd ) << " len " << Tens.nops() << std::endl;

Camille Coti
committed
#endif // TAUPROF
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
gi::ex multiply_seq2( tensor3D_t& T, matrix_int_t& J, int size ) {
gi::ex Tens = 0;
int a1, a2, a3, a4, a5, a6;
int A1, A2, A3, A4, A5, A6;
gi::ex W1, W2, W3, W4, W5, W6, W7;
gi::ex Z1, Z2, Z6, t5, tE, t1, t12, t123, t126, t13, t134, t14, t16, t2, t23, t24, t26, t3, t4, X7Y5;
gi::ex TE, T1, T2, T3, T4, T5, T12, T13, T14, T16, T23, T24, T26, T123, T126, T134;
TE = T1 = T2 = T3 = T4 = T5 = T12 = T13 = T14 = T16 = T23 = T24 = T26 = T123 = T126 = T134 = 0;
int N = size/2;
for( a4 = 0 ; a4 < N ; a4++ ) {
A4 = a4 + N;
for( a2 = 0 ; a2 < N ; a2++ ) {
A2 = a2 + N;
for( a6 = 0 ; a6 < N ; a6++ ) {
A6 = a6 + N;
W1 = T[a4][a2][a6];
W2 = T[a4][A2][a6];
W3 = T[a4][a2][A6];
W4 = T[A4][A2][a6];
W5 = T[a4][A2][A6];
W6 = T[A4][a2][A6];
W7 = T[A4][A2][A6];
for( a1 = 0 ; a1 < N ; a1++ ) {
A1 = a1 + N;
for( a5 = 0 ; a5 < N ; a5++ ) {
A5 = a5 + N;
Z1 = T[a1][a5][a6];
Z2 = T[A1][a5][a6];
Z6 = T[A1][a5][A6];
t5 = W3*T[a1][A5][a6];
tE = W4*T[A1][A5][A6];
t1 = W3*Z2;
t13 = t1;
t2 = W5*Z1;
t23 = t2;
t3 = W3*Z1;
t4 = W6*Z1;
t12 = W5*Z2;
t14 = W6*Z2;
t134 = t14 ;
t16 = W1*Z6;
t24 = W7*Z1;
t26 = W2*T[a1][a5][A6];
t123 = W5*Z2;
t126 = W2*Z6;
for( a3 = 0 ; a3 < N ; a3++ ) {
A3 = a3 + N;
TE = TE + tE*T[a1][a2][a3]*T[a4][a5][A3];
T5 = T5 + t5*T[A1][A2][A3]*T[A4][a5][a3];
X7Y5 = T[a1][A2][A3]*T[A4][A5][a3];
T1 = T1 + t1*X7Y5;
T16 = T16 + t16*X7Y5;
T2 = T2 + t2*T[A1][a2][A3]*T[A4][A5][a3];
T3 = T3 + t3*T[A1][A2][a3]*T[A4][A5][A3];
T4 = T4 + t4*T[A1][A2][A3]*T[a4][A5][a3];
T12 = T12 + t12*T[a1][a2][A3]*T[A4][A5][a3];
T13 = T13 + t13*T[a1][A2][a3]*T[A4][A5][A3];
T14 = T14 + t14*T[a1][A2][A3]*T[a4][A5][a3];
T23 = T23 + t23*T[A1][a2][a3]*T[A4][A5][A3];
T24 = T24 + t24*T[A1][a2][A3]*T[a4][A5][a3];
T26 = T26 + t26*T[A1][a2][A3]*T[A4][A5][a3];
T123 = T123 + t123*T[a1][a2][a3]*T[A4][A5][A3];
T126 = T126 + t126*T[a1][a2][A3]*T[A4][A5][a3];
T134 = T134 + t134*T[a1][A2][a3]*T[a4][A5][A3];
}
}
}
}
}
}
Tens = 4*(TE+T12+T13+T14+T16+T23+T24+T26 - (T1 + T2 + T3 + T4 + T5 +T123 + T126 + T134));
return Tens;
}
/*******************************************************************************
* 1-level decomposition *
*******************************************************************************/
gi::ex multiply_1level( tensor3D_t& T, matrix_int_t& J, int size ) { // simpler: same dimension everywhere
gi::ex Tens = 0;
gi::ex Tn;
int a1, a2, a3, b1;
gi::ex A;
int i, j;
i = 0;
j = 0;

Camille Coti
committed
double time;
#ifdef TAUPROF
void* ptr;
TAU_PROFILER_CREATE( ptr, "b","", TAU_USER );
#endif
for( a1 = 0 ; a1 < size; a1++ ){
i=i+1;
// std::cout << "Tens: " << Tens << std::endl;

Camille Coti
committed
// printf("i = %d\n", i);

Camille Coti
committed
// printf("j = %d\n", j);
#ifdef TAUPROF
TAU_START( "b" );
TAU_PROFILER_START( ptr );
#endif
A = T[a1][a2][a3];
/* Beyond this point, a2 and a3 are only used in the simplectic matrix */
for( b1 = 0 ; b1 < size ; b1++ ){
Tn = one_level1_product( &T, &J, A, size, a1, a2, a3, b1 );
Tens += Tn;
}
#ifdef TAUPROF
TAU_STOP( "b" );
// time = getTimeSpent( ptr );
long calls, childcalls;
double incl[TAU_MAX_COUNTERS], excl[TAU_MAX_COUNTERS];
const char **counters;
int numcounters, i, j;
TAU_PROFILER_GET_CALLS(ptr, &calls);
TAU_PROFILER_GET_CHILD_CALLS(ptr, &childcalls);
TAU_PROFILER_GET_INCLUSIVE_VALUES(ptr, &incl);
TAU_PROFILER_GET_EXCLUSIVE_VALUES(ptr, &excl);
TAU_PROFILER_GET_COUNTER_INFO(&counters, &numcounters);
printf("Calls = %ld, child = %ld\n", calls, childcalls);
printf("numcounters = %d\n", numcounters);
for (j = 0; j < numcounters ; j++) {
printf(">>>");
printf("counter [%d] = %s\n", j, counters[j]);
printf(" excl [%d] = %g, incl [%d] = %g\n", j, excl[j], j, incl[j]);
}
// time = getTimeSpent( "b" );

Camille Coti
committed
#endif // TAUPROF

Camille Coti
committed
return Tens;
}
gi::ex one_level1_product( tensor3D_t* T, matrix_int_t *J, gi::ex A, int size, int a1, int a2, int a3, int b1){
gi::ex TAB, TABB, TABC, TABCC, TABCD, TABCDD;
int b2, b3, c1, c2, c3, d1, d2, d3;
gi::ex Tens = 0;

Camille Coti
committed
const char timerB[] = "B";
TAB = (*J)[a1][b1];
for( b2 = 0 ; b2 < size ; b2++ ){
for( b3 = 0 ; b3 < size ; b3++ ){
TABB = TAB * A*(*T)[b1][b2][b3];
// TAU_START( timerB );
for( c2 = 0 ; c2 < size ; c2++ ){
TABC = TABB * (*J)[a2][c2];
TABCC = TABC * (*T)[c1][c2][c3] * (*J)[b3][c3] ;
T2 = 0;
for( d1 = 0 ; d1 < size ; d1++ ){
TABCD = TABCC * (*J)[c1][d1];
for( d2 = 0 ; d2 < size ; d2++ ){
TABCDD = TABCD * (*J)[b2][d2];
T0 += TABCDD * (*T)[d1][d2][d3]*(*J)[a3][d3];
// TAU_STOP( timerB );
}
}
#if 0
std::ostringstream oss;
oss << "output_" << getpid();
std::ofstream fd;
fd.open( oss.str(), std::ios::app );
fd << "T" << A << "=" << Tens << ";";
// fd << " with " << A << " " << a1 << " " << a2 << " " << a3 << " " << b1;
fd << std::endl;
fd.close();
#endif
return Tens;
}
gi::ex one_level2_product( tensor3D_t* T, matrix_int_t *J, gi::ex A, int size, int a1, int a2, int a3, int b1, int b2, int b3, int c1, int c2 ){
gi::ex TAB, TABB, TABC, TABCC, TABCD, TABCDD;
int c3, d1, d2, d3;
gi::ex Tens = 0;
TAB = (*J)[a1][b1];
TABB = TAB * A*(*T)[b1][b2][b3];
TABC = TABB * (*J)[a2][c2];
for( c3 = 0 ; c3 < size ; c3++ ){
TABCC = TABC * (*T)[c1][c2][c3] * (*J)[b3][c3] ;
T2 = 0;
for( d1 = 0 ; d1 < size ; d1++ ){
TABCD = TABCC * (*J)[c1][d1];
for( d2 = 0 ; d2 < size ; d2++ ){
TABCDD = TABCD * (*J)[b2][d2];
T0 += TABCDD * (*T)[d1][d2][d3]*(*J)[a3][d3];
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
}
return Tens;
}
/*******************************************************************************
* 2-level decomposition *
*******************************************************************************/
gi::ex multiply_2levels( tensor3D_t& T, matrix_int_t& J, int size ) { // simpler: same dimension everywhere
gi::ex Tens = 0;
int a1, a2, a3, b1;
gi::ex A;
int i, j;
i = 0;
j = 0;
for( a1 = 0 ; a1 < size; a1++ ){
i=i+1;
for( a2 = 0; a2 < size ; a2++ ){
j=j+1;
for( a3 = 0 ; a3 < size ; a3++ ){
A = T[a1][a2][a3];
/* Beyond this point, a2 and a3 are only used in the simplectic matrix */
for( b1 = 0 ; b1 < size ; b1++ ){
Tens += two_level1_product( &T, &J, A, size, a1, a2, a3, b1 );
}
}
}
}
return Tens;
}
gi::ex two_level1_product( tensor3D_t* T, matrix_int_t *J, gi::ex A, int size, int a1, int a2, int a3, int b1){
gi::ex TAB, TABB, TABC;
int b2, b3, c1, c2;
gi::ex Tens = 0;
TAB = (*J)[a1][b1];
for( b2 = 0 ; b2 < size ; b2++ ){
for( b3 = 0 ; b3 < size ; b3++ ){
TABB = TAB * A*(*T)[b1][b2][b3];
/* Beyond this point, b1 is not used anymore */
for( c1 = 0 ; c1 < size ; c1++ ){
for( c2 = 0 ; c2 < size ; c2++ ){
TABC = TABB * (*J)[a2][c2];
T0 += two_level2_product( T, J, TABC, size, a3, b2, b3, c1, c2 );
}
return Tens;
}
gi::ex two_level2_product( tensor3D_t* T, matrix_int_t *J, gi::ex TABC, int size, int a3, int b2, int b3, int c1, int c2 ){
int c3, d1, d2, d3;
gi::ex TABCC, TABCD, TABCDD;
gi::ex Tens = 0;
TABCC = TABC * (*T)[c1][c2][c3] * (*J)[b3][c3] ;
T2 = 0;
for( d1 = 0 ; d1 < size ; d1++ ){
TABCD = TABCC * (*J)[c1][d1];
for( d2 = 0 ; d2 < size ; d2++ ){
TABCDD = TABCD * (*J)[b2][d2];
T0 += TABCDD * (*T)[d1][d2][d3]*(*J)[a3][d3];