Newer
Older
(**
This file is part of the Elfic library
Copyright (C) Boldo, Clément, Faissole, Martin, Mayero
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)
(* References to pen-and-paper statements are from RR-9386-v2,
https://hal.inria.fr/hal-03105815v2/
This file refers to Sections 11.1 and 11.2 (pp. 117-128),
and 11.4 (pp. 131-132).
Some proof paths may differ. *)
From Coq Require Import ClassicalDescription ClassicalChoice.
From Coq Require Import PropExtensionality FunctionalExtensionality.
From Coq Require Import Lia Reals.
From Coquelicot Require Import Coquelicot.
Require Import subset_compl.
Require Import Rbar_compl.
Require Import sum_Rbar_nonneg.
Require Import Subset_charac.
Section Measure_def.
Context {E : Type}.
Variable gen : (E -> Prop) -> Prop.
(* Definition 611 p. 117 *)
Record measure := mk_measure {
meas :> (E -> Prop) -> Rbar ;
meas_emptyset : meas emptyset = 0 ;
meas_nonneg: nonneg meas;
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
meas_sigma_additivity :
forall A : nat -> E -> Prop,
(forall n, measurable gen (A n)) ->
(forall n m x, A n x -> A m x -> n = m) ->
meas (fun x => exists n, A n x) =
Sup_seq (fun n => sum_Rbar n (fun m => meas (A m)))
}.
Lemma measure_ext :
forall (mu : measure) A1 A2, (forall x, A1 x <-> A2 x) -> mu A1 = mu A2.
Proof.
intros mu A1 A2 H.
f_equal; apply functional_extensionality; intros x; now apply propositional_extensionality.
Qed.
(* From Lemma 610 p. 117 *)
Lemma measure_additivity_finite :
forall (mu : measure) (A : nat -> E -> Prop) N,
(forall n, (n <= N)%nat -> measurable gen (A n)) ->
(forall n m x, (n <= N)%nat -> (m <= N)%nat -> A n x -> A m x -> n = m) ->
mu (fun x => exists n, (n <= N)%nat /\ A n x) = sum_Rbar N (fun m => mu (A m)).
Proof.
intros mu A N H1 H2.
pose (B:= fun n (x:E) => match (le_lt_dec n N) with
| left _ => A n x
| right _ => False
end).
assert (K1: forall i x, (i <= N)%nat -> B i x = A i x).
intros i x Hi.
unfold B; case (le_lt_dec _ _); intros T; try easy.
contradict T; auto with arith.
assert (K2: forall i x, (N < i)%nat -> B i x = False).
intros i x Hi.
unfold B; case (le_lt_dec _ _); intros T; try easy.
contradict T; auto with arith.
apply trans_eq with (mu (fun x : E => exists n : nat, B n x)).
apply measure_ext.
intros x; split; intros (n,Hn).
exists n.
rewrite K1; try apply K1; apply Hn.
case (le_lt_dec n N); intros T.
exists n; split; try easy.
rewrite <- K1; easy.
exfalso.
rewrite <- (K2 n x); try easy.
rewrite meas_sigma_additivity.
rewrite Sup_seq_sum_Rbar_stable with
(fun n : nat => mu (B n)) N.
apply sum_Rbar_ext.
intros i Hi; apply sym_eq, measure_ext.
intros x; rewrite K1; easy.
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
apply sym_eq, measure_ext.
intros x; rewrite K2; auto; split; easy.
intros n; unfold B; case (le_lt_dec _ _); intros H.
apply H1; auto.
apply measurable_empty.
intros n p x J1 J2.
case (le_lt_dec n N); intros J3.
case (le_lt_dec p N); intros J4.
apply H2 with x; try easy.
rewrite K1 in J1; auto.
rewrite K1 in J2; auto.
contradict J2.
rewrite K2; auto with arith.
contradict J1.
rewrite K2; auto with arith.
Qed.
Lemma measure_additivity :
forall (mu : measure) A1 A2,
measurable gen A1 -> measurable gen A2 ->
(forall x, A1 x -> A2 x -> False) ->
mu (fun x => A1 x \/ A2 x) = Rbar_plus (mu A1) (mu A2).
Proof.
intros mu A0 A1 H0 H1 H.
pose (B := (fun n => match n with | 0 => A0 | S _ => A1 end)).
replace (fun x => A0 x \/ A1 x) with (fun x => exists n, (n <= 1)%nat /\ B n x).
replace (Rbar_plus (mu A0) (mu A1)) with (sum_Rbar 1%nat (fun m => mu (B m))).
apply measure_additivity_finite.
intros n Hn.
case n; simpl; [ now apply H0 | intros; now apply H1 ].
intros n m x Hn Hm Kn Km.
assert (Hn': n = 0%nat \/ n = 1%nat); try lia.
assert (Hm': m = 0%nat \/ m = 1%nat); try lia.
destruct Hn' as [Hn0|Hn1]; destruct Hm' as [Hm0|Hm1].
now rewrite Hn0, Hm0.
rewrite Hn0 in Kn; simpl in Kn.
rewrite Hm1 in Km; simpl in Km.
destruct (H x Kn Km).
rewrite Hn1 in Kn; simpl in Kn.
rewrite Hm0 in Km; simpl in Km.
destruct (H x Km Kn).
now rewrite Hn1, Hm1.
simpl; now rewrite Rbar_plus_comm.
apply functional_extensionality; intros x; apply propositional_extensionality; split.
intros [n [Hn H']].
replace (A0 x) with (B 0%nat x); try auto.
replace (A1 x) with (B 1%nat x); try auto.
assert (Hn': n = 0%nat \/ n = 1%nat); try lia.
now destruct Hn' as [Hn0|Hn1]; [ left; rewrite <- Hn0 | right; rewrite <- Hn1 ].
intros [K0|K1]; [ exists 0%nat | exists 1%nat ]; auto.
Qed.
Lemma measure_le_0_eq_0 :
forall (mu : measure) A, measurable gen A -> Rbar_le (mu A) 0 -> mu A = 0.
Proof.
intros mu A H1 H2.
apply Rbar_le_antisym; try assumption.
Qed.
Lemma measure_gt_0_exists :
forall (mu : measure) A, Rbar_lt 0 (mu A) -> exists x, A x.
Proof.
intros mu A H.
case (excluded_middle_informative (exists x : E, A x)); try easy.
intros H1.
absurd (Rbar_le (mu A) 0).
now apply Rbar_lt_not_le.
rewrite measure_ext with mu A (fun _ => False).
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
apply Rbar_le_refl.
intros x; split; try easy.
intros H2; apply H1; exists x; easy.
Qed.
(* Lemma 613 p. 118 *)
Lemma measure_decomp :
forall (mu : measure) A (B : nat -> E -> Prop),
measurable gen A ->
(forall n, measurable gen (B n)) ->
(forall x, exists n, B n x) ->
(forall n p x, B n x -> B p x -> n = p) ->
mu A = Sup_seq (fun N =>
sum_Rbar N (fun n => mu (fun x => A x /\ B n x))).
Proof.
intros mu A B H1 H2 H3 H4.
rewrite <- meas_sigma_additivity.
apply measure_ext.
intros x; split.
intros K; destruct (H3 x) as (n,Hn).
exists n; split; auto.
intros (n,(J1,J2)); auto.
intros n; apply measurable_inter; auto.
intros n m x (J1,J2) (J3,J4).
now apply H4 with x.
Qed.
Lemma measure_decomp_finite :
forall (mu : measure) A N (B : nat -> E -> Prop),
measurable gen A ->
(forall n, (n <= N)%nat -> measurable gen (B n)) ->
(forall x, exists n, (n <= N)%nat /\ B n x) ->
(forall n p x, (n <= N)%nat -> (p <= N)%nat ->
B n x -> B p x -> n = p) ->
mu A = sum_Rbar N (fun n => mu (fun x => A x /\ B n x)).
Proof.
intros mu A N B H1 H2 H3 H4.
rewrite <- measure_additivity_finite.
apply measure_ext.
intros x; split.
intros Hx; destruct (H3 x) as (n,(Hn1,Hn2)).
exists n; repeat split; auto.
intros (n,(Hn1,(Hn2,Hn3))); easy.
intros n Hn; apply measurable_inter; try easy.
now apply H2.
intros n m x J1 J2 (J3,J4) (J5,J6).
now apply (H4 n m x).
Qed.
(* From Lemma 614 p. 118 *)
Lemma measure_le_aux :
forall (mu : measure) A B,
measurable gen A -> measurable gen B ->
(forall x, A x -> B x) ->
mu B = Rbar_plus (mu (fun x => B x /\ ~ A x)) (mu A).
Proof.
intros mu A B HA HB H.
pose (C := fun x : E => B x /\ ~ A x).
replace (fun x : E => B x /\ ~ A x) with C; try easy.
replace B with (fun x => C x \/ A x).
apply measure_additivity; try easy.

François Clément
committed
now apply measurable_inter; [ | apply measurable_compl_rev ].
intros x KC KA; unfold C in KC; now contradict KC.
apply functional_extensionality; intros x; apply propositional_extensionality; split.
intros [[KB KA']|KA]; auto.
now intros KB; case (excluded_middle_informative (A x)); intros KA; [ right | left ].
Qed.
(* Lemma 614 p. 118 *)
Lemma measure_le :
forall (mu : measure) A B,
measurable gen A -> measurable gen B ->
(forall x, A x -> B x) ->
Rbar_le (mu A) (mu B).
Proof.
intros mu A B HA HB H.
replace (mu A) with (Rbar_plus 0 (mu A)); try now apply Rbar_plus_0_l.
replace (mu B) with (Rbar_plus (mu (fun x => B x /\ ~ A x)) (mu A)).
symmetry; now apply measure_le_aux.
Qed.
(* Lemma 614 p. 118 *)
Lemma measure_set_diff :
forall (mu : measure) A B,
measurable gen A -> measurable gen B ->
(forall x, A x -> B x) ->
is_finite (mu A) ->
mu (fun x => B x /\ ~ A x) = Rbar_minus (mu B) (mu A).
Proof.
intros mu A B HA HB H H'.
rewrite measure_le_aux with mu A B; try easy.
now apply Rbar_minus_plus_r.
Qed.
Lemma measure_set_not :
forall mu : measure,
forall A, measurable gen A -> is_finite (mu A) ->
mu (fun t => ~A t) = Rbar_minus (mu (fun _ => True)) (mu A).
Proof.
intros mu A HA1 HA2.
rewrite <- measure_set_diff; try easy.
apply measure_ext; try easy.
apply measurable_full.
Qed.
(* Lemma 615 p. 118 *)
Lemma measure_Boole_ineq_finite :
forall (mu : measure) (A : nat -> E -> Prop) N,
(forall n, (n <= N)%nat -> measurable gen (A n)) ->
Rbar_le (mu (fun x => exists n, (n <= N)%nat /\ A n x))
(sum_Rbar N (fun m => mu (A m))).
Proof.
intros mu A.
induction N; intros H.
apply Rbar_eq_le; unfold sum_Rbar.
f_equal; apply functional_extensionality; intros x; apply propositional_extensionality; split.
intros [n [Hn K]].
replace 0%nat with n; [ easy | lia ].
intros K; now exists 0%nat.
pose (B := fun x => exists n, (n <= N)%nat /\ A n x).
replace (fun x => exists n, (n <= S N)%nat /\ A n x)
with (fun x => A (S N) x \/ B x).
simpl.
replace (fun x => A (S N) x \/ B x)
with (fun x => A (S N) x /\ ~ B x \/ B x).
replace (mu (fun x => A (S N) x /\ ~ B x \/ B x))
with (Rbar_plus (mu (fun x => A (S N) x /\ ~ B x)) (mu B)).
apply Rbar_plus_le_compat.
apply measure_le; try now apply H.
apply measurable_inter; try now apply H.

François Clément
committed
apply measurable_compl_rev, measurable_union_finite; intros n Hn; apply H; auto.
now intros x [HSN HN'].
apply IHN; intros n Hn; apply H; auto.
apply sym_eq, measure_additivity.
apply measurable_inter; try now apply H.

François Clément
committed
apply measurable_compl_rev, measurable_union_finite; intros n Hn; apply H; auto.
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
apply measurable_union_finite; intros n Hn; apply H; auto.
intros x [HSN HN'] HN; auto.
apply functional_extensionality; intros x; apply propositional_extensionality; split; tauto.
apply functional_extensionality; intros x; apply propositional_extensionality; split.
now intros [HSN|[n [HN K]]]; [ exists (S N) | exists n; split; [ lia | ] ].
intros [n [Hn K]]; case (excluded_middle_informative (A (S N) x)); intros HSN.
now left.
right; exists n; split; try easy; case (Nat.eq_dec n (S N)); intros J.
contradict HSN; now rewrite <- J.
apply lt_n_Sm_le; now destruct Hn; [ | auto with arith ].
Qed.
Lemma measure_union :
forall (mu : measure) A1 A2,
measurable gen A1 -> measurable gen A2 ->
Rbar_le (mu (fun x => A1 x \/ A2 x)) (Rbar_plus (mu A1) (mu A2)).
Proof.
intros mu A0 A1 H0 H1.
pose (B := (fun n => match n with | 0 => A0 | S _ => A1 end)).
replace (fun x => A0 x \/ A1 x) with (fun x => exists n, (n <= 1)%nat /\ B n x).
replace (Rbar_plus (mu A0) (mu A1)) with (sum_Rbar 1%nat (fun m => mu (B m))).
apply measure_Boole_ineq_finite.
intros n Hn.
now case n; simpl; [ apply H0 | intros; apply H1 ].
simpl; now rewrite Rbar_plus_comm.
apply functional_extensionality; intros x; apply propositional_extensionality; split.
intros [n [Hn H]].
replace (A0 x) with (B 0%nat x) by auto.
replace (A1 x) with (B 1%nat x) by auto.
assert (Hn': n = 0%nat \/ n = 1%nat) by lia.
now destruct Hn' as [Hn0|Hn1]; [ left; rewrite <- Hn0 | right; rewrite <- Hn1 ].
intros [K0|K1]; [ exists 0%nat | exists 1%nat ]; auto.
Qed.
(* Definition 616 p. 119 *)
Definition continuous_from_below : ((E -> Prop) -> Rbar) -> Prop :=
fun mu => forall A : nat -> E -> Prop,
(forall n, measurable gen (A n)) ->
(forall n x, A n x -> A (S n) x) ->
mu (fun x => exists n, A n x) = Sup_seq (fun n => mu (A n)).
(* Lemma 617 p. 119 *)
Lemma measure_continuous_from_below :
forall (mu : measure), continuous_from_below mu.
Proof.
intros mu; unfold continuous_from_below; intros A HA HA'.
pose (B := layers A).
replace (fun x => exists n, A n x)
with (fun x => exists n : nat, B n x).
replace (fun n => mu (A n))
with (fun n => mu (fun x => exists m, (m <= n)%nat /\ B m x)).
rewrite meas_sigma_additivity; try now apply measurable_layers.
replace (fun n => mu (fun x => exists m, (m <= n)%nat /\ B m x))
with (fun n => sum_Rbar n (fun m => mu (B m))); try easy.
apply functional_extensionality; intros n; symmetry; apply measure_additivity_finite.
intros; now apply measurable_layers.
intros n' m' x Hn' Hm' HBn' HBm'; now apply layers_disjoint with A x.
now apply layers_disjoint.
apply functional_extensionality; intros n; f_equal.
apply functional_extensionality; intros x; apply propositional_extensionality; split.

François Clément
committed
now apply layers_union_alt.
now apply layers_union.
symmetry; apply functional_extensionality; intros x; apply propositional_extensionality; split.
now apply layers_union_countable.
intros [n HBn]; exists n; now apply layers_incl.
Qed.
Lemma subset_decr_shift_meas_finite :
forall (mu : measure) (A : nat -> E -> Prop),
(forall n x, A (S n) x -> A n x) ->
(forall n, measurable gen (A n)) ->
forall n0, is_finite (mu (A n0)) ->
forall n, is_finite (mu (A (n0 + n)%nat)).
Proof.
intros mu A HA HAn n0 HAn0 n.
apply Rbar_bounded_is_finite with 0 (mu (A n0)); try easy.
apply measure_le; try easy; now apply subset_decr_shift.
Qed.
(* From Lemma 619 pp. 119-120 *)
Lemma layers_from_above_measurable :
forall A : nat -> E -> Prop,
(forall n, measurable gen (A n)) ->
forall n0 n, measurable gen (layers_from_above A n0 n).
Proof.
intros A HA n0 n.

François Clément
committed
now apply measurable_inter, measurable_compl_rev.
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
Qed.
(* From Lemma 619 pp. 119-120 *)
Lemma layers_from_above_sup_seq :
forall (mu : measure) (A : nat -> E -> Prop),
(forall n x, A (S n) x -> A n x) ->
(forall n, measurable gen (A n)) ->
forall n0,
is_finite (mu (A n0)) ->
Sup_seq (fun n => mu (layers_from_above A n0 n)) =
Rbar_minus (mu (A n0)) (Inf_seq (fun n => mu (A (n0 + n)%nat))).
Proof.
intros mu A HA HAn n0 HAn0.
unfold layers_from_above.
replace (Sup_seq (fun n => mu (fun x => A n0 x /\ ~ A (n0 + n)%nat x)))
with (Sup_seq (fun n => Rbar_minus (mu (A n0)) (mu (A (n0 + n)%nat)))).
apply Sup_seq_minus_compat_l; try easy.
apply Sup_seq_ext; intros n; symmetry.
rewrite <- measure_set_diff; try easy.
now apply subset_decr_shift.
now apply subset_decr_shift_meas_finite.
Qed.
(* Definition 618 p. 119 *)
Definition is_continuous_from_above : ((E -> Prop) -> Rbar) -> Prop :=
fun mu => forall A : nat -> E -> Prop,
(forall n x, A (S n) x -> A n x) ->
(forall n, measurable gen (A n)) ->
(exists n0, is_finite (mu (A n0))) ->
mu (fun x => forall n, A n x) = Inf_seq (fun n => mu (A n)).
(* Lemma 619 pp. 119-120 *)
Lemma measure_continuous_from_above :
forall (mu : measure), is_continuous_from_above mu.
Proof.
intros mu A HA HAn [n0 HAn0].
replace (fun x : E => forall n, A n x)
with (fun x : E => forall n, A (n0 + n)%nat x).
replace (Inf_seq (fun n => mu (A n)))
with (Inf_seq (fun n => mu (A (n0 + n)%nat))).
apply Rbar_minus_eq_reg_l with (mu (A n0)); try easy.
rewrite <- measure_set_diff; try easy.
rewrite <- layers_from_above_sup_seq; try easy.
replace (fun x => A n0 x /\ ~ (forall n : nat, A (n0 + n)%nat x))
with (fun x => exists n1, layers_from_above A n0 n1 x).
apply measure_continuous_from_below.
now apply layers_from_above_measurable.
now apply layers_from_above_incr.
apply functional_extensionality; intros x;
now apply propositional_extensionality, layers_from_above_union.
now apply measurable_inter_countable.
intros x Hx; replace n0 with (n0 + 0)%nat; [easy|ring].
apply Rbar_bounded_is_finite with 0 (mu (A n0)); try easy.
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
apply measure_le; try easy.
now apply measurable_inter_countable.
intros x Hx; replace n0 with (n0 + 0)%nat; [easy|ring].
apply Inf_seq_decr_shift with (u := fun n => mu (A n)); intros n;
apply measure_le; try easy; apply HA.
apply functional_extensionality; intros x;
apply propositional_extensionality; split; intros H n; try easy.
case (le_or_lt n0 n); intros Hn.
replace n with (n0 + (n - n0))%nat; [easy|auto with arith].
apply subset_decr_shift with (n0 - n)%nat; try easy.
replace (n + (n0 - n))%nat with (n0 + 0)%nat; [easy|lia].
Qed.
(* From Lemma 620 pp. 120-121 *)
Lemma partial_union_measurable :
forall A : nat -> E -> Prop,
(forall n, measurable gen (A n)) ->
forall n, measurable gen (partial_union A n).
Proof.
intros A HA n.
apply measurable_union_countable.
intros m; apply measurable_inter; try easy.
case (le_lt_dec m n); intros Hm.
apply measurable_ext with (2:=measurable_full _); now intros.
apply measurable_ext with (2:=measurable_empty _); intros.
split; intros H; [ easy | contradict H; lia ].
Qed.
(* From Lemma 620 pp. 120-121 *)
Lemma partial_union_union_measure :
forall (mu : measure) (A : nat -> E -> Prop),
(forall n, measurable gen (A n)) ->
mu (fun x => exists n, partial_union A n x) =
Sup_seq (fun n => mu (partial_union A n)).
Proof.
intros mu A HA.
apply measure_continuous_from_below.
now apply partial_union_measurable.
apply partial_union_nondecr.
Qed.
(* Lemma 620 pp. 120-121 *)
Lemma measure_Boole_ineq :
forall (mu : measure) (A : nat -> E -> Prop),
(forall n, measurable gen (A n)) ->
Rbar_le (mu (fun x => exists n, A n x))
(Sup_seq (fun n => sum_Rbar n (fun m => mu (A m)))).
Proof.
intros mu A HA.
replace (fun x => exists n, A n x)
with (fun x => exists n, partial_union A n x).
rewrite partial_union_union_measure; try easy.
apply Sup_seq_le.
intros n; now apply measure_Boole_ineq_finite.
symmetry; apply functional_extensionality; intros x; apply propositional_extensionality.
apply partial_union_union.
Qed.
(* Definition 622 p. 121 *)
Definition is_finite_measure : ((E -> Prop) -> Rbar) -> Prop :=
fun mu => is_finite (mu (fun _ => True)).
(* Lemma 623 p. 121 *)
Lemma finite_measure_is_finite :
forall (mu : measure), is_finite_measure mu ->
forall A, measurable gen A -> is_finite (mu A).
intros mu Hmu A HA.
apply Rbar_bounded_is_finite with (x := 0) (z := mu (fun _ => True)); try easy.
apply measure_le; try easy.
apply measurable_full.
Qed.
(* Definition 624 p. 121 *)
Definition is_sigma_finite_measure : ((E -> Prop) -> Rbar) -> Prop :=
fun mu => exists A : nat -> E -> Prop,
(forall n, measurable gen (A n)) /\
(forall x, exists n, A n x) /\
(forall n, is_finite (mu (A n))).
(* Lemma 627 p. 122 *)
Lemma finite_measure_is_sigma_finite :
forall mu : (E -> Prop) -> Rbar,
is_finite_measure mu ->
is_sigma_finite_measure mu.
Proof.
intros mu Hmu; exists (fun _ _ => True).
split; [ | split]; intros _; try easy.
apply measurable_full.
now exists 0%nat.
Qed.
(*
Definition is_subadditive_finite : ((E -> Prop) -> Rbar) -> Prop :=
fun mu => forall (A : nat -> E -> Prop) (N : nat),
(forall n, (n <= N)%nat -> measurable gen (A n)) ->
Rbar_le (mu (fun x : E => exists n, (n <= N)%nat /\ A n x))
(sum_Rbar N (fun m => mu (A m))).
Lemma measure_is_subadditive_finite :
forall (mu : measure), is_subadditive_finite mu.
Proof.
unfold is_subadditive_finite; intros mu A N HA.
apply measure_Boole_ineq_finite; easy.
Qed.
*)
Lemma is_sigma_finite_measure_equiv_def :
forall (mu : measure),
(exists A : nat -> E -> Prop,
(forall n, measurable gen (A n)) /\
(forall x, exists n, A n x) /\
(forall n x, A n x -> A (S n) x) /\
(forall n, is_finite (mu (A n))))).
Proof.
intros mu.
split; intros H1.
(* *)
unfold is_sigma_finite_measure in H1.
destruct H1 as [A [H2 [H3 H4]]].
exists (partial_union A); repeat split.
apply partial_union_measurable; easy.
intros x; rewrite <- partial_union_union; easy.
apply partial_union_nondecr.
intros n; eapply (Rbar_bounded_is_finite 0).
apply measure_Boole_ineq_finite; easy.
easy.
induction n; simpl.
apply H4.
rewrite <- IHn.
rewrite <- (H4 (S n)); easy.
(* *)
destruct H1 as [A H].
exists A; easy.
Qed.
(* Definition 626 p. 122 *)
Definition is_diffuse_measure : ((E -> Prop) -> Rbar) -> Prop :=
fun mu => forall x, mu (fun z => z = x) = 0.
(* Lemma 629 p. 122. *)
Definition meas_restricted_meas (mu : (E -> Prop) -> Rbar) (A : E -> Prop) :=
fun (B : E -> Prop) =>
mu (fun x : E => A x /\ B x).
Variable mu : measure.
(* Definition 626 p. 122 *)
Lemma meas_restricted_emptyset :
forall A, meas_restricted_meas mu A emptyset = 0.
Proof.
intros A; unfold meas_restricted_meas.
erewrite measure_ext.
intros x; split; easy.
Qed.
(* Definition 626 p. 122 *)
Lemma meas_restricted_nonneg :
forall A, nonneg (meas_restricted_meas mu A).
Lemma meas_restricted_sigma_additivity :
forall A, measurable gen A ->
(forall n, measurable gen (B n)) ->
(forall n m x, B n x -> B m x -> n = m) ->
meas_restricted_meas mu A (fun x => exists n, B n x) =
Sup_seq (fun n => sum_Rbar n (fun m => meas_restricted_meas mu A (B m)))).
Proof.
intros A HA B H1 H2.
unfold meas_restricted_meas.
rewrite <- meas_sigma_additivity.
f_equal; apply (distrib_inter_union_seq_l A B).
intros n; apply measurable_inter; try easy.
intros n m x2 H5 H6; apply (H2 n m x2).
apply H5.
apply H6.
Qed.
(* Definition 626 p. 122 *)
Definition meas_restricted : forall A, measurable gen A -> measure :=
fun A HA =>
(meas_restricted_emptyset A)
(meas_restricted_nonneg A)
(meas_restricted_sigma_additivity A HA).
(* We could also define the restricted sigma-algebra.
It is not useful now. *)
End Measure_def.
Section Negligible_subset.
Context {E F : Type}.
Context {gen : (E -> Prop) -> Prop}.
Variable mu : measure gen.
(* Definition 631 p. 123 *)
Definition negligible : (E -> Prop) -> Prop :=
fun f => exists A : E -> Prop,
(forall x, f x -> A x) /\
(measurable gen A) /\
mu A = 0.
(* From Lemma 636 p. 123 *)
Lemma negligible_null_set :
forall A, measurable gen A -> mu A = 0 -> negligible A.
Proof.
intros A H1 H2; exists A; repeat split; easy.
Qed.
(* Lemma 637 p. 123 *)
Proof.
apply negligible_null_set.
apply measurable_empty.
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
Qed.
Lemma negligible_ext :
forall A1 A2, (forall x, A1 x <-> A2 x) -> negligible A1 -> negligible A2.
Proof.
intros A1 A2 H (f,(J1,(J2,J3))).
exists f; split; try split; try easy.
intros x Hx; now apply J1,H.
Qed.
(* Lemma 640 p. 123 *)
Lemma negligible_le :
forall (A1 A2 : E -> Prop),
(forall x, A1 x -> A2 x) ->
negligible A2 -> negligible A1.
Proof.
intros A1 A2 H (f,(J1,(J2,J3))).
exists f; split; try split; try easy.
intros x Hx; now apply J1, H.
Qed.
(* Lemma 639 p. 123 *)
Lemma negligible_union_countable :
forall A : nat -> E -> Prop,
(forall n, negligible (A n)) ->
negligible (fun x => exists n, A n x).
Proof.
intros A Hn.
assert (exists f: nat -> E -> Prop, forall n,
(forall x:E, A n x -> f n x) /\ (measurable gen (f n))
/\ mu (f n) = 0).
(* *)
destruct (choice
(fun (n:nat) (g:E->Prop) =>
(forall x : E, A n x -> g x) /\
measurable gen g /\ mu g = 0)).
intros n.
destruct (Hn n) as (f,(J1,(J2,J3))).
exists f; repeat split; easy.
exists x; easy.
(* *)
destruct H as (f,Hf).
exists (fun x => exists n, f n x).
split.
intros x (n,Kn).
exists n; now apply Hf.
split.
apply measurable_union_countable.
intros n; apply Hf.
apply measure_le_0_eq_0.
apply measurable_union_countable.
intros n; apply Hf.
replace (Finite 0) with
(Sup_seq (fun n => sum_Rbar n (fun m => mu (f m)))).
apply measure_Boole_ineq.
intros n; apply Hf.
apply trans_eq with (Sup_seq (fun _ => 0)).
apply Sup_seq_ext.
intros n; induction n; simpl.
apply Hf.
rewrite IHn.
rewrite (proj2 (proj2 (Hf (S n)))).
simpl; now rewrite Rplus_0_r.
apply is_sup_seq_unique.
simpl; intros eps; split.
intros _; rewrite Rplus_0_l.
apply eps.
exists 0%nat.
rewrite Rminus_0_l, <- Ropp_0.
apply Ropp_lt_contravar, eps.
Qed.
Lemma negligible_union:
forall A1 A2,
negligible A1 -> negligible A2 ->
negligible (fun x => A1 x \/ A2 x).
Proof.
intros A1 A2 (f1,(J11,(J12,J13))) (f2,(J21,(J22,J23))).
exists (fun x => f1 x \/ f2 x); split; try split.
intros x [H1|H2].
left; now apply J11.
right;now apply J21.
now apply measurable_union.
eapply measure_le_0_eq_0.
apply measurable_union.
apply J12.
apply J22.
assert ((Finite 0)=(Rbar_plus (mu f1) (mu f2))).
rewrite J23;rewrite J13;symmetry;now rewrite Rbar_plus_0_r.
rewrite H.
apply (measure_union gen mu f1 f2 J12 J22).
Qed.
(* Definition 641 p. 124 *)
Definition ae : (E -> Prop) -> Prop := fun A => negligible (fun x => ~ A x).
Lemma ae_ext : forall A1 A2, (forall x, A1 x <-> A2 x) -> ae A1 -> ae A2.
Proof.
intros A1 A2 H HA1.
unfold ae.
unfold ae in HA1.
apply (negligible_ext (fun x : E => ~ A1 x)
(fun x : E => ~ A2 x));auto.
red.
red in H.
intro.
split;destruct (H x) as (H1,H2);auto.
Qed.
(* Lemma 643 p. 124 *)
Lemma ae_everywhere : forall (A : E -> Prop), (forall x, A x) -> ae A.
Proof.
intros A H.
exists B; repeat split; try easy.
intuition.
Qed.
(* Lemma 644 p. 124 *)

François Clément
committed
Lemma ae_everywhere_alt :
forall (P : F -> Prop) (f g : E -> F),
(forall x, P (f x)) ->
ae (fun x => f x = g x) ->
ae (fun x => P (g x)).
Proof.
intros P f g HP Hfg.
apply negligible_le with (A2 := fun x => ~ P (f x) \/ ~ f x = g x).
intros x Hx1; right; intros Hx2; apply Hx1; now rewrite <- Hx2.
apply negligible_union; try easy.
apply negligible_ext with (A1 := fun _ => False); try intuition.
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Qed.
(* Lemma 646 p. 124 *)
Lemma ae_modus_ponens :
forall (A1 A2 : E -> Prop), ae (fun x => A1 x -> A2 x) -> ae A1 -> ae A2.
Proof.
intros A1 A2 H H1.
apply negligible_le with (A2 := fun x => ~ (A1 x -> A2 x) \/ ~ A1 x).
intros; tauto.
now apply negligible_union.
Qed.
(* Lemma 647 p. 124 *)
Lemma ae_imply :
forall (A1 A2 : E -> Prop), (forall x, A1 x -> A2 x) -> ae A1 -> ae A2.
Proof.
intros A1 A2 H; apply ae_modus_ponens.
now apply ae_everywhere.
Qed.
Lemma ae_True : ae (fun _ => True).
Proof.
now apply ae_everywhere.
Qed.
Lemma ae_inter_countable :
forall A : nat -> E -> Prop,
(forall n, ae (A n)) ->
ae (fun x => forall n, A n x).
Proof.
intros A H1; unfold ae.
apply negligible_ext with
(fun x : E => exists n : nat, ~ A n x).
intros x; split.
intros (n,Hn) H.
apply Hn, H.
apply not_all_ex_not.
apply negligible_union_countable.
apply H1.
Qed.
Lemma ae_inter : forall A B, ae A -> ae B -> ae (fun x => A x /\ B x).
Proof.
intros A B HA HB.
pose (C := fun n x => match n with | 0 => A x | S _ => B x end).
apply ae_ext with (fun x => forall n, C n x).
intros x; split.
intros Hx; split; [apply (Hx 0%nat) | apply (Hx 1%nat)].
intros [Hx1 Hx2]; intros n; now destruct n.
apply ae_inter_countable; intros n; now destruct n.
Qed.
Global Instance ae_filter : Filter ae.
Proof.
constructor.
exact ae_True.
exact ae_inter.
exact ae_imply.
Qed.
Lemma ae_not_empty : mu (fun _ => True) <> 0 -> ~ ae (fun _ => False).
Proof.
intros H [A [HA1 [HA2 HA3]]].
apply H; rewrite <- HA3.
apply measure_ext; intros; split; try easy.
intros; now apply HA1.
Qed.
Global Instance ae_properfilter' : mu (fun _ => True) <> 0 -> ProperFilter' ae.
Proof.
intros.
constructor.
now apply ae_not_empty.
exact ae_filter.
Qed.
Lemma ae_ex : mu (fun _ => True) <> 0 -> forall A, ae A -> exists x, A x.
Proof.
intros H; apply ae_not_empty in H; intros A HA1.
apply not_all_not_ex; intros HA2; apply H.
apply ae_ext with A; try easy.
intros; split; try easy.
intros; now apply (HA2 x).
Qed.
Global Instance ae_properfilter : mu (fun _ => True) <> 0 -> ProperFilter ae.
Proof.
constructor.
now apply ae_ex.
exact ae_filter.
Qed.
(* Definition 650 p. 125 *)
Definition ae_rel : (F -> F -> Prop) -> (E -> F) -> (E -> F) -> Prop :=
fun P f g => ae (fun x => P (f x) (g x)).
(* Lemma 651 p. 125 *)
Lemma ae_rel_refl :
forall (P : F -> F -> Prop) (f : E -> F),
(forall y, P y y) ->
ae_rel P f f.
Proof.
intros; now apply ae_everywhere.
Qed.
(* Lemma 652 p. 125 *)
Lemma ae_rel_sym :
forall (P : F -> F -> Prop) (f g : E -> F),
(forall y z, P y z -> P z y) ->
ae_rel P f g -> ae_rel P g f.
Proof.
intros P f g H.
apply ae_imply.
intros; now apply H.
Qed.
Definition ae_eq : (E -> F) -> (E -> F) -> Prop := fun f g => ae_rel eq f g.
Lemma ae_eq_refl : forall f, ae_eq f f.
Proof.
intros; now apply ae_rel_refl.
Qed.
Lemma ae_eq_sym : forall f g, ae_eq f g -> ae_eq g f.
Proof.
intros; now apply ae_rel_sym.
Qed.
(* From Lemma 654 p. 125 *)
Lemma ae_eq_trans : forall f g h, ae_eq f g -> ae_eq g h ->
ae_eq f h.
Proof.
intros f g h; unfold ae_eq, ae.
intros H1 H2.
apply negligible_le with
(fun x => (f x <> g x) \/ (g x <> h x)).
intros x K.
case (excluded_middle_informative (f x = g x)); intros K'.
right; rewrite <- K'; easy.
left; easy.
apply negligible_union; easy.
Qed.
End Negligible_subset.
Section Negligible_subset_bis.
Context {E : Type}.
Context {F : Type}.
Context {gen : (E -> Prop) -> Prop}.
Variable mu : measure gen.
(* Lemma 659 pp. 126-127 (with I = nat) *)
Lemma ae_op_compat :
forall (P Q : F -> F -> Prop) (op : (nat -> F) -> F) (y0 : F),
(forall x, P x x) ->
(forall (f g : nat -> E -> F),
(forall n x, P (f n x) (g n x)) ->
forall x, Q (op (fun i => f i x)) (op (fun i => g i x))) ->
(forall (f g : nat -> E -> F),
(forall n, ae mu (fun x => P (f n x) (g n x))) ->
ae mu (fun x => Q (op (fun i => f i x)) (op (fun i => g i x)))).
Proof.
intros P Q op y0 H1 H2 f g H3.
pose (B_i := fun i => (fun x => P (f i x) (g i x))).
pose (B := fun x => forall i, B_i i x).
pose (f_t := fun i x =>
match (excluded_middle_informative (B x)) with
| left _ => f i x
| right _ => y0
end).
pose (g_t := fun i x =>
match (excluded_middle_informative (B x)) with
| left _ => g i x
| right _ => y0
end).
assert (J0: forall i, ae mu (B_i i)).
intros i; unfold B_i.
apply H3.
assert (J1: ae mu B).
now apply ae_inter_countable.
assert (J2: forall i x, P (f_t i x) (g_t i x)).
intros i x; unfold f_t, g_t.
case (excluded_middle_informative (B x)); intros Hx.
2: apply H1.
apply Hx.
generalize (H2 _ _ J2); intros H5.
assert (J3: forall x, B x ->
op (fun i : nat => f_t i x) = op (fun i : nat => f i x)).
intros x Hx.