Skip to content
Snippets Groups Projects
nat_compl.v 2.04 KiB
Newer Older
  • Learn to ignore specific revisions
  • (**
    This file is part of the Elfic library
    
    Copyright (C) Boldo, Clément, Faissole, Martin, Mayero
    
    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 3 of the License, or (at your option) any later version.
    
    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    COPYING file for more details.
    *)
    
    From Coq Require Import Arith Nat Lia.
    
    
    Section Order_compl.
    
    (** Complements on the order on natural numbers. **)
    
    Lemma lt_1 :
      forall n, n < 1 <-> n = 0.
    Proof.
    intros; lia.
    Qed.
    
    Lemma lt_2 :
      forall n, n < 2 <-> n = 0 \/ n = 1.
    Proof.
    intros; lia.
    Qed.
    
    End Order_compl.
    
    
    Section Mult_compl.
    
    (** Complements on the multiplication on natural numbers. **)
    
    Lemma pred_mul_S :
      forall N M, pred (S N * S M) = S N * M + N.
    Proof.
    intros; lia.
    Qed.
    
    Lemma lt_mul_S :
      forall N M p, p < S N * S M <-> p < S (pred (S N * S M)).
    Proof.
    intros; rewrite <- S_pred_pos; try easy.
    apply Nat.mul_pos_pos; lia.
    Qed.
    
    End Mult_compl.
    
    
    Section Pow_compl.
    
    (** Complements on the power on natural numbers. **)
    
    Lemma S_pow_pos :
      forall N M, 0 < N -> 0 < N ^ M.
    Proof.
    intros N M HN.
    destruct N; try easy; clear HN.
    destruct N.
    rewrite Nat.pow_1_l; lia.
    destruct M.
    rewrite Nat.pow_0_r; lia.
    apply lt_trans with (S M); try lia.
    apply Nat.pow_gt_lin_r; lia.
    Qed.
    
    Lemma lt_pow_S :
      forall N M p, p < S M ^ S N <-> p < S (pred (S M ^ S N)).
    Proof.
    intros; rewrite Nat.succ_pred; try easy.
    apply Nat.pow_nonzero; lia.
    Qed.
    
    (*
    Lemma diff_pow :
      forall a b N,
        a ^ S N - b ^ S N = (a - b) * sum_f_0 (fun n => a ^ n * b ^ (N - n)) N.
    Proof.
    
    François Clément's avatar
    François Clément committed
    Aglopted.
    
    *)
    
    (*
    Lemma pred_pow_S :
      forall N M, pred (S M ^ S N) = M * sum_f_0 (pow (S M)) N.
    Proof.
    intros N M; rewrite <- (pow1 (S N)), diff_pow; f_equal.
    rewrite S_INR; lra.
    f_equal; apply functional_extensionality; intros n.
    rewrite pow1; lra.
    Qed.
    *)
    
    End Pow_compl.