Newer
Older
intros f g Hf Hg Zf Zg Hfg.
pose (h':= fun x => g x + (-1)*f x).
pose (h:= fun x => f x + h' x).
assert (Y1: forall x, h x = g x).
intros ; unfold h, h'; ring.
assert (Hh' : SF gen h').
apply SF_plus; try easy.
now apply SF_scal.
assert (Zh' : nonneg (fun x : E => h' x)).
intros x; unfold h'.
simpl; apply Rplus_le_reg_l with (f x).
ring_simplify; easy.
replace (LInt_SFp g Hg) with
(LInt_SFp h (SF_plus f Hf h' Hh')).
unfold h; rewrite LInt_SFp_plus; try easy.
rewrite <- (Rbar_plus_0_r (LInt_SFp f Hf)) at 1.
apply Rbar_plus_le_compat_l.
apply LInt_SFp_pos; easy.
apply sym_eq, LInt_SFp_ext; easy.
Qed.
(* Lemma 782 p. 160 *)
Lemma LInt_SFp_continuous :
forall (f : E -> R) (Hf : SF gen f),
LInt_SFp f Hf =
Rbar_lub (fun x =>
exists (g : E -> R), exists (Hg : SF gen g),
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
(forall z, g z <= f z) /\
LInt_SFp g Hg = x).
Proof.
intros f Hf Zf.
apply sym_eq, Rbar_is_lub_unique.
split.
unfold Rbar_is_upper_bound;
intros x (g,(Hg1,(Hg2,(Hg3,Hg4)))).
rewrite <- Hg4.
apply LInt_SFp_monotone; assumption.
intros x; unfold Rbar_is_upper_bound.
intros H; apply H.
exists f; exists Hf; split; try easy.
split; try easy.
intros; apply Rle_refl.
Qed.
Lemma SF_charac : forall A, measurable gen A -> SF gen (charac A).
Proof.
intros A HA.
exists (canonizer (charac A) (0::1::nil)).
split.
apply finite_vals_canonizer.
intros x.
case (charac_or A x); intros H; rewrite H.
apply in_eq.
apply in_cons, in_eq.
intros a.
apply (measurable_fun_charac_R gen A HA (fun z => z = a)).
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
Defined.
(* Lemma 771 p. 156 *)
Lemma LInt_SFp_charac :
forall A (HA : measurable gen A),
LInt_SFp (charac A) (SF_charac A HA) = mu A.
Proof.
intros A HA.
unfold LInt_SFp; simpl.
rewrite canonizer_Sorted; try easy.
unfold RemoveUseless; simpl.
case (excluded_middle_informative _); case (excluded_middle_informative _); intros Y1 Y2;
unfold sum_Rbar_map; simpl; unfold af1.
rewrite Rbar_mult_0_l, Rbar_plus_0_l.
rewrite Rbar_mult_1_l, Rbar_plus_0_r.
apply measure_ext.
intros x; split; intros H.
apply charac_1.
injection H; easy.
f_equal; apply charac_is_1; easy.
rewrite Rbar_mult_0_l, Rbar_plus_0_l.
apply measure_ext.
intros x; split; try easy.
intros Hx; apply Y1.
exists x.
now apply charac_is_1.
rewrite Rbar_mult_1_l, Rbar_plus_0_r.
apply measure_ext.
intros x; split; intros H.
apply charac_1.
injection H; easy.
f_equal; apply charac_is_1; easy.
apply measure_ext.
intros x; split; try easy.
intros Hx; apply Y1.
exists x.
now apply charac_is_1.
intros y.
case (charac_or A y); intros Hy.
rewrite Hy; apply in_eq.
rewrite Hy; apply in_cons, in_eq.
apply LSorted_consn.
apply LSorted_cons1.
apply Rlt_0_1.
Qed.
(* Lemma 780 p. 160 *)
Lemma Lint_SFp_eq_other_list :
forall (f : E -> R) (Hf : SF gen f) l,
nonneg_l (map Finite l) -> finite_vals f (0 :: l) -> NoDup l ->
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
LInt_SFp f Hf = sum_Rbar_map l (af1 f).
Proof.
intros f (lf,((Y1,(Y2,Y3)),Y4)) l Hl H1 H2; simpl.
unfold LInt_SFp; simpl.
apply trans_eq with (sum_Rbar_map (sort Rle l)
(fun a : R => af1 f (Finite a))).
apply sum_Rbar_map_ext_l; try easy.
apply Sorted_In_eq_eq.
intros x; split; intros Hx;
generalize (In_select_P _ _ _ Hx);
generalize (In_select_In _ _ _ Hx); intros M1 M2.
(* *)
apply In_select_P_inv; try easy.
apply Permutation.Permutation_in with l.
apply corr_sort.
destruct (Y2 x M1) as (y,Hy); rewrite <- Hy.
specialize (H1 y).
case (in_inv H1); try easy.
intros K; contradict M2.
unfold af1; rewrite <- Hy, <- K.
apply Rbar_mult_0_l.
(* *)
apply In_select_P_inv; try easy.
case (excluded_middle_informative (exists y, f y = x)).
intros (y,Hy); rewrite <- Hy.
apply Y3.
intros K.
assert (K':forall y, f y <> x).
apply not_ex_not_all.
intros (z,Hz); apply K.
exists z.
case (Req_dec (f z) x); auto with real.
intros L; now contradict Hz.
generalize M2; intros M2'.
contradict M2'; unfold af1.
rewrite measure_ext with gen mu _ (fun _ => False).
intros y; split; try easy.
intros M; injection M; apply K'.
(* *)
apply LocallySorted_select; try assumption.
intros x y z J1 J2; apply Rlt_trans with (1:=J1); easy.
apply LocallySorted_select; try assumption.
intros x y z J1 J2; apply Rlt_trans with (1:=J1); easy.
apply LocallySorted_impl with (Rle) (fun x y => x <> y).
intros a b N; case N; intros N1 N2; auto with real.
now contradict N1.
apply LocallySorted_sort_Rle.
apply LocallySorted_neq.
apply Permutation.Permutation_NoDup with (2:=H2).
apply corr_sort.
(* *)
apply sym_eq, sum_Rbar_map_Perm_strict.
apply corr_sort.
intros x Hx; unfold af1.
apply Rbar_mult_le_pos_pos_pos.
apply nonneg_l_In with (map Finite l); try easy.
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
Qed.
Lemma SF_mult_charac :
forall (f : E -> R) (Hf : SF gen f) A,
measurable gen A ->
SF gen (fun x => f x * charac A x).
Proof.
intros f (l,(Hl1,Hl2)) A HA.
pose (g:= fun x => f x * charac A x); fold g.
exists (canonizer g (0::l)).
split.
apply finite_vals_canonizer.
intros y; unfold g.
case (charac_or A y); intros Hy.
rewrite Hy, Rmult_0_r.
apply in_eq.
rewrite Hy, Rmult_1_r.
apply in_cons.
apply Hl1.
(* *)
intros y; unfold g.
apply measurable_ext with (fun x =>
(y=0 /\ (~A x \/ f x = 0))
\/
(y <> 0 /\ A x /\ (f x = y))).
intros x; case (charac_or A x); intros L; rewrite L;
try rewrite Rmult_0_l; try rewrite Rmult_1_l.
apply charac_0 in L.
case (Req_dec y 0); intros Hy.
rewrite Rmult_0_r.
split; try easy; intros _; left; split; try easy; now left.
rewrite Rmult_0_r.
split; try easy.
intros T; case T; try easy.
intros T; contradict Hy; easy.
apply charac_1 in L; rewrite Rmult_1_r; split.
intros T; case T; try easy.
intros (Y1,Y2); case Y2; try easy.
intros Y3; rewrite Y1,Y3; easy.
case (Req_dec y 0); intros Hy1 Hy2.
left; split; try easy.
right; rewrite <- Hy1; easy.
right; split; try split; easy.
(* *)
apply measurable_union; apply measurable_inter;
try apply measurable_union; try apply measurable_inter;
try easy; try apply measurable_Prop.

François Clément
committed
apply measurable_compl_rev; easy.
Lemma SF_scal_charac :
forall (x : E) a A, measurable gen A -> SF gen (fun t => a * charac A t).
Proof.
intros x a A HA; apply SF_mult_charac; try easy.
apply (SF_cst x).
Qed.

François Clément
committed
Lemma SF_mult_charac_alt:
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
SF gen (fun y =>
sum_Rbar_map (proj1_sig Hf) (fun t => t * charac (fun x => A x /\ f x = t) y)).
Proof.
intros f Hf A HA P.
assert (T:(fun y => real (sum_Rbar_map (proj1_sig Hf)
(fun t : R =>
Finite
(t *
charac
(fun x : E =>
A x /\ f x = t) y)))) =
(fun y:E => (Finite (f y * charac A y)))).
apply functional_extensionality.
intros x; apply sym_eq; f_equal.
apply finite_vals_charac_sum_eq; try easy.
destruct Hf as (l,Hl); apply Hl.
rewrite T.
apply SF_mult_charac; easy.
Defined.
Lemma LInt_SFp_mult_charac_aux :
forall (f : E -> R) (Hf : SF gen f) A (HA : measurable gen A) (P : nonneg f),

François Clément
committed
let H4 := SF_mult_charac_alt f Hf A HA P in
LInt_SFp (fun x => f x * charac A x) H3 =
LInt_SFp (fun y =>
sum_Rbar_map (proj1_sig Hf) (fun t => t * charac (fun x => A x /\ f x = t) y)) H4.
Proof.
intros f Hf A HA P H3 H4.
apply LInt_SFp_ext; try easy.
intros x; simpl; apply Rmult_le_pos.
apply P.
case (charac_or A x); intros L; rewrite L; auto with real.
intros x.
rewrite <- finite_vals_charac_sum_eq; try easy.
destruct Hf as (l,Hl); apply Hl.
Qed.
Lemma LInt_SFp_mult_charac :
forall (f : E -> R) (Hf : SF gen f) A (HA : measurable gen A),
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
let H3 := SF_mult_charac f Hf A HA in
LInt_SFp (fun x => f x * charac A x) H3 =
sum_Rbar_map (proj1_sig Hf)
(fun t : R => Rbar_mult t (mu (fun x => A x /\ f x = t))).
Proof.
intros f Hf A HA P H3.
destruct Hf as (l,Hl); simpl.
rewrite Lint_SFp_eq_other_list with (l:=l).
apply sum_Rbar_map_ext_f.
intros x Hx; unfold af1.
case (Req_dec x 0); intros Zx.
rewrite Zx, 2!Rbar_mult_0_l; easy.
f_equal.
apply measure_ext.
(* *)
intros y; split.
intros H1; assert (A y).
apply charac_1.
case (charac_or A y); try easy.
intros T; contradict H1.
rewrite T; rewrite Rmult_0_r.
apply sym_not_eq; simpl; injection; apply Zx.
split; try easy.
injection H1; intros T; rewrite <- T.
rewrite charac_is_1; try easy; ring.
intros (H1,H2); f_equal.
rewrite H2, charac_is_1; try easy; ring.
(* *)
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
intros x Hx.
destruct Hl as ((Y1,(Y2,Y4)),Y3).
destruct (Y2 x) as (y,Hy).
apply In_map_Finite; easy.
generalize (P y); intros H; simpl in H.
assert (H0: is_finite x).
clear - Hx.
generalize Hx; case x; try easy.
intros T; rewrite in_map_iff in T.
destruct T as (y,(Hy1,Hy2)); easy.
intros T; rewrite in_map_iff in T.
destruct T as (y,(Hy1,Hy2)); easy.
rewrite <- H0, <- Hy; simpl; easy.
(* *)
intros y.
case (charac_or A y); intros HAy; rewrite HAy.
rewrite Rmult_0_r; apply in_eq.
rewrite Rmult_1_r; apply in_cons.
apply Hl.
(* *)
apply LocallySorted_Rlt_NoDup.
apply Hl.
Qed.
End LInt_SFp_def.
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
Section Adap_seq_def.
Context {E : Type}.
Variable gen : (E -> Prop) -> Prop.
(* From Definition 798 p. 166 *)
Definition is_adapted_seq : (E -> Rbar) -> (nat -> E -> R) -> Prop :=
fun f phi =>
(forall n, nonneg (phi n)) /\
incr_fun_seq phi /\
(* (forall x n, phi n x <= phi (S n) x) /\*)
(forall x, is_sup_seq (fun n => phi n x) (f x)).
(* From Definition 798 p. 166 *)
Definition SF_seq : (nat -> E -> R) -> Set := fun phi => forall n, SF gen (phi n).
Lemma is_adapted_seq_is_lim_seq :
forall f phi x, is_adapted_seq f phi -> is_lim_seq (fun n => phi n x) (f x).
Proof.
intros f phi x (Y1,(Y2,Y3)).
apply is_sup_incr_is_lim_seq; try easy.
intros n; apply Y2.
Qed.
Lemma is_adapted_seq_nonneg : forall f phi, is_adapted_seq f phi -> nonneg f.
Proof.
intros f phi (Y1,(Y2,Y3)); intros x.
apply is_sup_seq_le with (fun _ => 0) (fun n : nat => phi n x); try easy.
intros n; apply Y1.
intros eps; split; intros; simpl.
rewrite Rplus_0_l; apply eps.
exists 0%nat; apply Rplus_lt_reg_l with eps; ring_simplify.
apply eps.
Qed.
End Adap_seq_def.
Section Adap_seq_mk.
Notation bpow2 e := (bpow radix2 e).
Context {E: Type}.
Context {gen : (E -> Prop) -> Prop}.
Variable mu : measure gen.
Variable f : E -> Rbar.
Hypothesis f_Mplus : Mplus gen f.
(* From Lemma 799 pp. 166-167 *)
Definition mk_adapted_seq : nat -> E -> R :=
fun n x => match Rbar_le_lt_dec (INR n) (f x) with
| left _ => INR n
| right _ => round radix2 (FIX_exp (-Z.of_nat n)) Zfloor (f x)
end.
(* From Lemma 799 pp. 166-167 *)
Lemma mk_adapted_seq_le : forall n x, Rbar_le (mk_adapted_seq n x) (f x).
Proof with auto with typeclass_instances.
intros n x; unfold mk_adapted_seq.
case (Rbar_le_lt_dec _ _); intros H; try easy.
case_eq (f x).
intros r Hr; simpl.
apply round_DN_pt...
intros _; easy.
destruct f_Mplus as [Hf _].
intros K; specialize (Hf x).
contradict Hf.
rewrite K; easy.
Qed.
Lemma mk_adapted_seq_ge2 : forall n x, Rbar_le (mk_adapted_seq n x) (INR n).
Proof with auto with typeclass_instances.
intros n x; unfold mk_adapted_seq.
case (Rbar_le_lt_dec _ _); intros H.
apply Rbar_le_refl.
simpl; apply Rle_trans with (f x).
apply round_DN_pt...
destruct f_Mplus as [Hf _].
generalize (Hf x), H; case (f x); try easy.
simpl; auto with real.
Qed.
Lemma mk_adapted_seq_nonneg : forall n, nonneg (mk_adapted_seq n).
Proof with auto with typeclass_instances.
intros n x; unfold mk_adapted_seq.
case (Rbar_le_lt_dec _ _).
intros _; simpl.
apply pos_INR.
intros _; simpl.
apply round_ge_generic...
apply generic_format_0...
destruct f_Mplus as [Hf _].
specialize (Hf x).
case_eq (f x); simpl; try (intros _; apply Rle_refl).
intros r Hr; rewrite Hr in Hf; easy.
Qed.
(* From Lemma 799 pp. 166-167 *)
Lemma mk_adapted_seq_incr : incr_fun_seq mk_adapted_seq.
(* forall x n, mk_adapted_seq n x <= mk_adapted_seq (S n) x.*)
Proof with auto with typeclass_instances.
intros x n; unfold mk_adapted_seq.
case (Rbar_le_lt_dec _ _); intros H1.
case (Rbar_le_lt_dec _ _); intros H2.
apply le_INR; auto with arith.
apply round_ge_generic...
replace (INR n) with (F2R (Float radix2 (Z.of_nat n) 0%Z)).
apply generic_format_F2R.
intros _; unfold FIX_exp, cexp; simpl.
apply Pos2Z.neg_is_nonpos.
unfold F2R; simpl; rewrite Rmult_1_r.
apply sym_eq, INR_IZR_INZ.
generalize H1 H2; case (f x); try easy.
case (Rbar_le_lt_dec _ _); intros H2.
absurd (Rbar_lt (INR n) (INR n)).
apply Rbar_le_not_lt; simpl; apply Rle_refl.
trans (INR (S n)) 1.
change (Rle (INR n) (INR (S n))); apply le_INR; auto with arith.
trans (f x) 1.
apply round_ge_generic...
assert (H:generic_format radix2 (FIX_exp (- Z.of_nat n))
(round radix2 (FIX_exp (- Z.of_nat n)) Zfloor (f x))).
apply generic_format_round...
generalize H; generalize (round radix2 (FIX_exp (- Z.of_nat n)) Zfloor (f x)).
intros r Hr; rewrite Hr; apply generic_format_F2R.
intros _; unfold cexp, FIX_exp; simpl.
replace (Z.neg (Pos.of_succ_nat n)) with (- Z.of_nat (S n))%Z by easy.
assert (Z.of_nat n <= Z.of_nat (S n))%Z; lia.
apply round_DN_pt...
Qed.
(* From Lemma 799 pp. 166-167 *)
Lemma mk_adapted_seq_is_sup :
forall x, is_sup_seq (fun n => mk_adapted_seq n x) (f x).
Proof with auto with typeclass_instances.
intros x.
case_eq (f x); simpl.
intros r Hr eps; split.
intros n.
generalize (mk_adapted_seq_le n x).
rewrite Hr; simpl.
intros Y; apply Rle_lt_trans with (1:=Y).
apply Rplus_lt_reg_l with (-r); ring_simplify; apply eps.
pose (m:=max (Z.abs_nat (up (f x)))
(1+Z.abs_nat (mag radix2 (pos eps)))).
exists m.
unfold mk_adapted_seq; simpl.
case (Rbar_le_lt_dec _ _).
intros K; contradict K.
apply Rbar_lt_not_le.
rewrite Hr; simpl.
apply Rlt_le_trans with (IZR (up r)).
apply archimed.
unfold m; rewrite INR_IZR_INZ.
apply IZR_le.
apply Z.le_trans with
(Z.of_nat (Z.abs_nat (up r))).
rewrite Zabs2Nat.id_abs.
apply Zabs_ind; auto with zarith.
rewrite Hr; apply inj_le.
apply Nat.le_max_l.
(* . *)
intros _; rewrite Hr.
apply Rplus_lt_reg_l with
(eps-round radix2 (FIX_exp (- Z.of_nat m)) Zfloor r).
apply Rle_lt_trans with
(-(round radix2 (FIX_exp (- Z.of_nat m)) Zfloor r - r)).
right; ring.
case (Req_dec r 0); intros Zr.
rewrite Zr, 2!round_0...
ring_simplify; apply eps.
apply Rle_lt_trans with (1:=RRle_abs _).
rewrite Rabs_Ropp.
apply Rlt_le_trans with (ulp radix2 (FIX_exp (- Z.of_nat m)) r).
apply error_lt_ulp...
rewrite ulp_FIX.
apply Rle_trans with eps; [idtac|simpl; right; ring].
unfold m; destruct (mag radix2 (pos eps)) as (e,He).
simpl (mag_val _ _ _).
apply Rle_trans with (bpow2 (e-1)).
apply bpow_le.
rewrite Nat2Z.inj_max.
apply Zopp_le_cancel; rewrite Z.opp_involutive.
apply Z.le_trans with (2:=Z.le_max_r _ _).
rewrite Nat2Z.inj_succ.
rewrite Zabs2Nat.id_abs.
apply Zabs_ind; lia.
rewrite <- Rabs_right.
2: apply Rle_ge; left; apply eps.
apply He.
apply Rgt_not_eq, eps.
intros Hr M.
exists (Z.abs_nat (up M)).
unfold mk_adapted_seq; simpl.
case (Rbar_le_lt_dec _ _).
intros _.
apply Rlt_le_trans with (IZR (up M)).
apply archimed.
rewrite INR_IZR_INZ, Zabs2Nat.id_abs, abs_IZR.
apply RRle_abs.
intros K; contradict K.
rewrite Hr; easy.
destruct f_Mplus as [Hf _].
intros K; specialize (Hf x).
contradict Hf.
rewrite K; easy.
Qed.
(* From Lemma 799 pp. 166-167 *)
Lemma mk_adapted_seq_Sup :
forall x, f x = Sup_seq (fun n => mk_adapted_seq n x).
Proof with auto with typeclass_instances.
intros x.
apply sym_eq, is_sup_seq_unique.
apply mk_adapted_seq_is_sup.
Qed.
(* From Lemma 799 pp. 166-167 *)
Lemma mk_adapted_seq_Lim :
forall x, f x = Lim_seq (fun n => mk_adapted_seq n x).
Proof with auto with typeclass_instances.
intros x.
rewrite Lim_seq_incr_Sup_seq.
2: apply mk_adapted_seq_incr.
apply mk_adapted_seq_Sup.
Qed.
(* From Lemma 799 pp. 166-167 *)
Lemma mk_adapted_seq_is_adapted_seq : is_adapted_seq f mk_adapted_seq.
Proof.
split.
intros n x; apply mk_adapted_seq_nonneg.
split.
apply mk_adapted_seq_incr.
apply mk_adapted_seq_is_sup.
Qed.
(* From Lemma 799 pp. 166-167 *)
Lemma mk_adapted_seq_SF_aux :
forall n a, measurable gen (fun x => mk_adapted_seq n x = a).
Proof with auto with typeclass_instances.
intros n a.
assert (Fn: generic_format radix2 (FIX_exp (- Z.of_nat n)) (INR n)).
replace (INR n) with (F2R (Float radix2 (Z.of_nat n) 0%Z)).
apply generic_format_F2R.
intros _; unfold FIX_exp, cexp; simpl; lia.
unfold F2R; simpl; rewrite Rmult_1_r.
apply sym_eq, INR_IZR_INZ.
case (excluded_middle_informative (exists y, mk_adapted_seq n y = a)).
(* non vide *)
intros K; destruct K as (y,Hy).
assert (Fa: generic_format radix2 (FIX_exp (- Z.of_nat n)) a).
rewrite <- Hy; unfold mk_adapted_seq.
case (Rbar_le_lt_dec _ _); intros K; try easy.
apply generic_format_round...
generalize (mk_adapted_seq_ge2 n y); rewrite Hy; simpl; intros Ha'.
case (Req_dec a (INR n)); intros Ha.
(* . a = n *)
apply measurable_ext with (fun z => Rbar_le (INR n) (f z)).
intros z; unfold mk_adapted_seq.
case (Rbar_le_lt_dec _ _); intros H.
split; easy.
split; intros H1.
absurd (Rbar_le (INR n) (INR n)).
2: apply Rbar_le_refl.
apply Rbar_lt_not_le.
trans (f z) 1.
contradict H1; apply Rlt_not_eq.
rewrite Ha; simpl.
apply Rle_lt_trans with (f z).
apply round_DN_pt...
destruct f_Mplus as [Hf _].
generalize H (Hf z); case (f z); try easy.
destruct f_Mplus as [_ Hf].
apply Hf with (A:= fun x => Rbar_le (INR n) x).
apply measurable_gen.
exists (Finite (INR n)); easy.
(* . a < n *)
assert (L: exists r2:Rbar,
forall (z:E),
(Rbar_le a (f z) /\ Rbar_lt (f z) r2)
<-> mk_adapted_seq n z = a).
(* 2 cas non fusionnables
sinon r2 = p_infty mais < infty marche pas *)
exists (succ radix2 (FIX_exp (-Z.of_nat n)) a).
intros z; unfold mk_adapted_seq.
case (Rbar_le_lt_dec _ _); intros Hz.
split.
intros (Y1,Y2).
(* a < n <= f z < succ a : impossible *)
assert (Ffz: is_finite (f z)).
destruct f_Mplus as [Hf _].
generalize Y2, (Hf z); case (f z); easy.
rewrite <- Ffz in Hz, Y1, Y2; simpl in Hz, Y1, Y2.
absurd (succ radix2 (FIX_exp (- Z.of_nat n)) a <= INR n)%R.
apply Rlt_not_le.
apply Rle_lt_trans with (f z); easy.
apply succ_le_lt...
case Ha'; try easy; intros K; now contradict K.
intros K; contradict K; now apply sym_not_eq.
assert (Fz: is_finite (f z)).
destruct f_Mplus as [Hf _].
generalize (Hf z), Hz; case (f z); easy.
rewrite <- Fz; simpl; rewrite <- Fz in Hz; simpl in Hz.
split.
intros (Y1,Y2).
apply round_DN_eq...
intros Y; split.
rewrite <- Y; apply round_DN_pt...
case (generic_format_EM radix2 (FIX_exp (- Z.of_nat n)) (f z)).
intros K; rewrite <- Y; rewrite round_generic...
case (Req_dec (f z) 0); intros L.
rewrite L, succ_0, ulp_FIX.
apply bpow_gt_0.
apply succ_gt_id; easy.
intros K.
rewrite <- Y; rewrite succ_DN_eq_UP...
assert (L: f z <= round radix2 (FIX_exp (- Z.of_nat n)) Zceil (f z)).
apply round_UP_pt...
case L; try easy.
intros K'; contradict K.
rewrite K'; apply generic_format_round...
destruct L as (r2,Hr2).
apply measurable_ext with
(fun x => Rbar_le a (f x)/\ Rbar_lt (f x) r2).
apply Hr2.
destruct f_Mplus as [_ Hf].
apply Hf with (A:= fun x => Rbar_le a x /\ Rbar_lt x r2).
apply measurable_inter.
apply measurable_gen.
exists (Finite a); easy.
apply measurable_compl.
eapply measurable_ext.
2: apply measurable_gen.
2: exists r2; easy.
intros x; split; intros L.
now apply Rbar_le_not_lt.
now apply Rbar_not_lt_le.
intros H.
apply measurable_ext with (fun _ => False).
2: apply measurable_empty.
intros x; split; try easy.
intros K; apply H; exists x; easy.
Qed.
(* From Lemma 799 pp. 166-167 *)
Lemma mk_adapted_seq_SF : SF_seq gen mk_adapted_seq.
Proof with auto with typeclass_instances.
assert (C1: forall N, { l | forall i,
(i <= N)%nat -> In i l} ) .
induction N.
exists (0%nat::nil).
intros i Hi.
replace i with 0%nat; try lia.
apply in_eq.
destruct IHN as (l,Hl).
exists (S N ::l).
intros i Hi.
case (le_lt_or_eq i (S N)); try easy.
intros Hi'; apply in_cons.
apply Hl; lia.
intros Hi'; rewrite Hi'; apply in_eq.
(* *)
intros n.
assert (C: { l | forall i,
(i <= n*Nat.pow 2 n)%nat
-> In (INR i/bpow2 (Z.of_nat n)) l }).
destruct (C1 (n*Nat.pow 2 n)%nat) as (l1,Hl1).
exists (map (fun j => INR j / bpow2 (Z.of_nat n)) l1).
intros i Hi.
apply (in_map (fun j : nat => INR j / bpow2 (Z.of_nat n))
l1 i).
apply Hl1; easy.
(* *)
destruct C as (l,Hl).
exists (canonizer (mk_adapted_seq n) l).
split.
apply finite_vals_canonizer.
intros x.
unfold mk_adapted_seq.
case (Rbar_le_lt_dec _ _); intros H1.
replace (INR n) with
(INR (n * 2 ^ n) / bpow2 (Z.of_nat n)).
apply Hl; auto.
rewrite mult_INR; rewrite pow_INR.
rewrite pow_powerRZ, bpow_powerRZ.
unfold Rdiv; rewrite Rmult_assoc, Rinv_r.
ring.
apply Rgt_not_eq, powerRZ_lt.
simpl; apply Rlt_0_2.
assert (Hl':forall i : Z,
(0 <= IZR i <= INR n * bpow2 (Z.of_nat n))%R ->
In
(IZR i / bpow2 (Z.of_nat n)) l).
intros i H.
replace (IZR i) with (INR (Z.abs_nat i)).
apply Hl.
apply Nat2Z.inj_le.
rewrite Zabs2Nat.id_abs.
rewrite Z.abs_eq.
apply le_IZR.
apply Rle_trans with (1:=proj2 H).
rewrite <- INR_IZR_INZ, mult_INR.
right; f_equal.
rewrite pow_INR.
rewrite pow_powerRZ, bpow_powerRZ; easy.
apply le_IZR; apply H.
rewrite INR_IZR_INZ.
rewrite Zabs2Nat.id_abs.
rewrite Z.abs_eq; try easy.
apply le_IZR; apply H.
pose (rnd:=(round radix2 (FIX_exp (-Z.of_nat n)) Zfloor
(real (f x)))); fold rnd.
assert (Frnd:generic_format radix2 (FIX_exp (-Z.of_nat n))
rnd).
apply generic_format_round...
rewrite Frnd; unfold F2R; simpl.
unfold cexp, FIX_exp at 2; simpl.
rewrite bpow_opp.
apply Hl'.
split; apply Rmult_le_reg_r with
(bpow2 (cexp radix2 (FIX_exp (- Z.of_nat n)) rnd));
try rewrite <- Frnd; try apply bpow_gt_0.
rewrite Rmult_0_l.
apply round_ge_generic...
apply generic_format_0...
destruct f_Mplus as [Hf _].
generalize (Hf x); case (f x); simpl; try easy.
intros _ ; apply Rle_refl.
unfold cexp, FIX_exp; simpl.
rewrite Rmult_assoc, <- bpow_plus.
ring_simplify (Z.of_nat n + - Z.of_nat n)%Z.
simpl; rewrite Rmult_1_r.
unfold rnd; apply round_le_generic...
replace (INR n) with (F2R (Float radix2 (Z.of_nat n) 0%Z)).
apply generic_format_F2R.
intros _; unfold FIX_exp, cexp; simpl; lia.
unfold F2R; simpl; rewrite Rmult_1_r.
apply sym_eq, INR_IZR_INZ.
destruct f_Mplus as [Hf _].
generalize H1, (Hf x); case (f x); simpl; try easy; auto with real.
intros a.
apply mk_adapted_seq_SF_aux.
Qed.
Lemma mk_adapted_seq_Mplus : Mplus_seq gen mk_adapted_seq.
Proof.
intros n.
apply SFplus_Mplus.
apply mk_adapted_seq_nonneg.
apply mk_adapted_seq_SF.
Qed.
End Adap_seq_mk.
Section LIntSF_Dirac.
Context {E : Type}.
Hypothesis Einhab : inhabited E.
Context {gen : (E -> Prop) -> Prop}.
(* Lemma 787 p. 162 *)
Lemma LInt_SFp_Dirac :
forall (f : E -> R) (Hf : SF gen f) a, (* nonneg not necessary. *)
LInt_SFp (Dirac_measure gen a) f Hf = f a.
Proof.
intros f [l [Hf1 Hf2]] a; unfold LInt_SFp, af1; simpl.
rewrite (finite_vals_sum_eq _ l); try easy.

François Clément
committed
apply sum_Rbar_map_ext_f; intros; repeat f_equal.
apply subset_ext; intros t; apply Rbar_finite_eq.