Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
Numerical Analysis in Coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Micaela Mayero
Numerical Analysis in Coq
Commits
03f929aa
Commit
03f929aa
authored
2 years ago
by
François Clément
Browse files
Options
Downloads
Patches
Plain Diff
Define comb_lin and state properties.
File should be renamed comb_lin.v.
parent
001a7703
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
FEM/bigop_compl.v
+128
-3
128 additions, 3 deletions
FEM/bigop_compl.v
with
128 additions
and
3 deletions
FEM/bigop_compl.v
+
128
−
3
View file @
03f929aa
...
...
@@ -9,11 +9,15 @@ From mathcomp Require Import seq path ssralg div tuple finfun.
Add
LoadPath
"../LM"
as
LM
.
From
LM
Require
Import
linear_map
.
(
*
TODO
:
rename
this
file
as
Comb_lin
.
v
.
*
)
Section
bigop_compl
.
Lemma
bigop_ext
:
forall
{
A
:
Type
}
(
idx
:
A
)
(
op
:
A
->
A
->
A
)
n
F
G
,
(
forall
i
:
'
I_n
,
F
i
=
G
i
)
->
\
big
[
op
/
idx
]
_
(
i
<
n
)
F
i
=
\
big
[
op
/
idx
]
_
(
i
<
n
)
G
i
.
Lemma
bigop_ext
:
forall
{
A
:
Type
}
(
idx
:
A
)
(
op
:
A
->
A
->
A
)
n
(
F
G
:
'
I_n
->
A
),
(
forall
i
:
'
I_n
,
F
i
=
G
i
)
->
\
big
[
op
/
idx
]
_
(
i
<
n
)
F
i
=
\
big
[
op
/
idx
]
_
(
i
<
n
)
G
i
.
Proof
.
Admitted
.
...
...
@@ -52,6 +56,7 @@ Admitted.
End
bigop_compl
.
Section
Linearity
.
Context
{
E
F
:
ModuleSpace
R_Ring
}
.
...
...
@@ -89,4 +94,124 @@ rewrite sum_pn_Sn; easy.
Qed
.
*
)
End
Linearity
.
Notation
"''' E ^ n"
:=
(
'
I_n
->
E
)
(
at
level
8
,
E
at
level
2
,
n
at
level
2
,
format
"''' E ^ n"
).
Section
Comb_lin1
.
Context
{
E
:
ModuleSpace
R_Ring
}
.
Context
{
n
:
nat
}
.
Definition
comb_lin
:=
fun
(
L
:
'
R
^
n
)
(
B
:
'
E
^
n
)
=>
\
big
[
plus
/
zero
]
_
(
i
<
n
)
scal
(
L
i
)
(
B
i
).
Lemma
comb_lin_ext_l
:
forall
(
L
M
:
'
R
^
n
)
B
,
L
=
M
->
comb_lin
L
B
=
comb_lin
M
B
.
Proof
.
intros
L
M
B
H
;
rewrite
H
;
easy
.
Qed
.
Lemma
comb_lin_ext_r
:
forall
L
(
B
C
:
'
E
^
n
),
B
=
C
->
comb_lin
L
B
=
comb_lin
L
C
.
Proof
.
intros
L
B
C
H
;
rewrite
H
;
easy
.
Qed
.
Lemma
comb_lin_ext
:
forall
(
L
M
:
'
R
^
n
)
(
B
C
:
'
E
^
n
),
(
forall
i
,
scal
(
L
i
)
(
B
i
)
=
scal
(
M
i
)
(
C
i
))
->
comb_lin
L
B
=
comb_lin
M
C
.
Proof
.
intros
L
M
B
C
H
.
Admitted
.
Lemma
comb_lin_0_l
:
forall
(
L
:
'
R
^
n
)
B
,
L
=
zero
->
comb_lin
L
B
=
zero
.
Proof
.
intros
L
B
HL
;
rewrite
HL
.
unfold
comb_lin
.
Admitted
.
Lemma
comb_lin_0_r
:
forall
L
(
B
:
'
E
^
n
),
B
=
zero
->
comb_lin
L
B
=
zero
.
Proof
.
intros
L
B
HB
;
rewrite
HB
.
unfold
comb_lin
.
apply
trans_eq
with
(
\
big
[
plus
/
zero
]
_
(
i
<
n
)
zero
).
apply
bigop_ext
.
intros
;
apply
scal_zero_r
.
rewrite
big_const_ord
.
Admitted
.
End
Comb_lin1
.
Section
Comb_lin2
.
Context
{
E
F
:
ModuleSpace
R_Ring
}
.
Context
{
n
:
nat
}
.
Lemma
comb_lin_fun_compat
:
forall
(
L
:
'
R
^
n
)
(
f
:
'
(
E
->
F
)
^
n
)
x
,
(
comb_lin
L
f
)
x
=
comb_lin
L
(
fun
i
=>
f
i
x
).
Proof
.
Admitted
.
Lemma
linear_mapping_comb_lin_compat
:
forall
(
f
:
E
->
F
)
(
L
:
'
R
^
n
)
(
B
:
'
E
^
n
),
is_linear_mapping
f
->
f
(
comb_lin
L
B
)
=
comb_lin
L
(
fun
i
=>
f
(
B
i
)).
Proof
.
Admitted
.
Lemma
comb_lin_linear_mapping_compat
:
forall
(
L
:
'
R
^
n
)
(
f
:
'
(
E
->
F
)
^
n
),
(
forall
i
,
is_linear_mapping
(
f
i
))
->
is_linear_mapping
(
comb_lin
L
f
).
Proof
.
Admitted
.
End
Comb_lin2
.
Section
Comb_lin3
.
Context
{
E
F
:
ModuleSpace
R_Ring
}
.
Context
{
n
p
:
nat
}
.
Lemma
comb_lin_comb_lin
:
forall
(
L
:
'
R
^
n
)
(
f
:
'
(
E
->
F
)
^
n
)
(
M
:
'
R
^
p
)
(
B
:
'
E
^
p
),
(
forall
i
,
is_linear_mapping
(
f
i
))
->
(
comb_lin
L
f
)
(
comb_lin
M
B
)
=
comb_lin
M
(
fun
i
:
'
I_p
=>
comb_lin
L
f
(
B
i
)).
Proof
.
intros
L
f
M
B
Hf
.
rewrite
linear_mapping_comb_lin_compat
;
try
easy
.
apply
comb_lin_linear_mapping_compat
;
easy
.
Qed
.
End
Comb_lin3
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment