Skip to content
Snippets Groups Projects
Commit 26dbcad3 authored by François Clément's avatar François Clément
Browse files

Add and move references to RR-9386.

parent 0be32827
No related branches found
No related tags found
No related merge requests found
...@@ -77,7 +77,8 @@ Inductive Sigma_ring : (U -> Prop) -> Prop := ...@@ -77,7 +77,8 @@ Inductive Sigma_ring : (U -> Prop) -> Prop :=
| Sigma_ring_Union_seq : Union_seq Sigma_ring. | Sigma_ring_Union_seq : Union_seq Sigma_ring.
(* Sigma_algebra is the sigma-algebra generated by gen, (* Sigma_algebra is the sigma-algebra generated by gen,
ie the smallest sigma-algebra containing gen. *) ie the smallest sigma-algebra containing gen.
From Definitions 474 p. 84 and 482 p. 85 (v2) *)
Inductive Sigma_algebra : (U -> Prop) -> Prop := Inductive Sigma_algebra : (U -> Prop) -> Prop :=
| Sigma_algebra_Gen : Incl gen Sigma_algebra | Sigma_algebra_Gen : Incl gen Sigma_algebra
| Sigma_algebra_wEmpty : wEmpty Sigma_algebra | Sigma_algebra_wEmpty : wEmpty Sigma_algebra
...@@ -532,6 +533,7 @@ Proof. ...@@ -532,6 +533,7 @@ Proof.
intros; apply Ext_equiv; split; now apply Lsyst_lub_alt. intros; apply Ext_equiv; split; now apply Lsyst_lub_alt.
Qed. Qed.
(* Lemma 501 p. 87 (v2) *)
Lemma Sigma_algebra_ext : Lemma Sigma_algebra_ext :
Incl gen0 (Sigma_algebra gen1) -> Incl gen0 (Sigma_algebra gen1) ->
Incl gen1 (Sigma_algebra gen0) -> Incl gen1 (Sigma_algebra gen0) ->
...@@ -1624,6 +1626,7 @@ apply Sigma_algebra_Compl. ...@@ -1624,6 +1626,7 @@ apply Sigma_algebra_Compl.
apply Sigma_algebra_Union. apply Sigma_algebra_Union.
Qed. Qed.
(* From Lemma 475 p. 84 (v2) *)
Lemma Sigma_algebra_wFull : Lemma Sigma_algebra_wFull :
wFull (Sigma_algebra gen). wFull (Sigma_algebra gen).
Proof. Proof.
...@@ -1696,6 +1699,7 @@ Proof. ...@@ -1696,6 +1699,7 @@ Proof.
rewrite <- Sigma_algebra_is_Algebra; apply Algebra_Union_disj_finite. rewrite <- Sigma_algebra_is_Algebra; apply Algebra_Union_disj_finite.
Qed. Qed.
(* From Lemma 475 p. 84 (v2) *)
Lemma Sigma_algebra_Inter_seq : Lemma Sigma_algebra_Inter_seq :
Inter_seq (Sigma_algebra gen). Inter_seq (Sigma_algebra gen).
Proof. Proof.
...@@ -1722,6 +1726,7 @@ Proof. ...@@ -1722,6 +1726,7 @@ Proof.
apply Union_seq_disj, Sigma_algebra_Union_seq. apply Union_seq_disj, Sigma_algebra_Union_seq.
Qed. Qed.
(* From Lemma 502 p. 87 (v2) *)
Lemma Sigma_algebra_gen_remove : Lemma Sigma_algebra_gen_remove :
forall A, Sigma_algebra gen A -> forall A, Sigma_algebra gen A ->
Incl (Sigma_algebra (add gen A)) (Sigma_algebra gen). Incl (Sigma_algebra (add gen A)) (Sigma_algebra gen).
......
...@@ -39,7 +39,6 @@ Section measurable_Facts. ...@@ -39,7 +39,6 @@ Section measurable_Facts.
Context {E : Type}. (* Universe. *) Context {E : Type}. (* Universe. *)
Variable genE : (E -> Prop) -> Prop. (* Generator. *) Variable genE : (E -> Prop) -> Prop. (* Generator. *)
(* From Definitions 474 p. 84 and 482 p. 85 *)
Definition measurable : (E -> Prop) -> Prop := Sigma_algebra genE. Definition measurable : (E -> Prop) -> Prop := Sigma_algebra genE.
Definition measurable_finite : (nat -> E -> Prop) -> nat -> Prop := Definition measurable_finite : (nat -> E -> Prop) -> nat -> Prop :=
...@@ -73,7 +72,6 @@ Proof. ...@@ -73,7 +72,6 @@ Proof.
apply Sigma_algebra_wEmpty. apply Sigma_algebra_wEmpty.
Qed. Qed.
(* From Lemma 475 p. 84 *)
Lemma measurable_full : measurable fullset. (* wFull measurable. *) Lemma measurable_full : measurable fullset. (* wFull measurable. *)
Proof. Proof.
apply Sigma_algebra_wFull. apply Sigma_algebra_wFull.
...@@ -133,7 +131,6 @@ Proof. ...@@ -133,7 +131,6 @@ Proof.
apply Sigma_algebra_Union_seq. apply Sigma_algebra_Union_seq.
Qed. Qed.
(* From Lemma 475 p. 84 *)
Lemma measurable_inter_seq : Lemma measurable_inter_seq :
forall A, measurable_seq A -> measurable (inter_seq A). forall A, measurable_seq A -> measurable (inter_seq A).
(* Inter_seq measurable. *) (* Inter_seq measurable. *)
...@@ -155,7 +152,7 @@ intros A N HA n Hn; apply measurable_union_finite. ...@@ -155,7 +152,7 @@ intros A N HA n Hn; apply measurable_union_finite.
intros m Hm; apply HA; lia. intros m Hm; apply HA; lia.
Qed. Qed.
(* From Lemma 480 pp. 84-85 *) (* From Lemma 480 pp. 84-85 (v2) *)
Lemma measurable_DU : Lemma measurable_DU :
forall A, measurable_seq A -> measurable_seq (DU A). forall A, measurable_seq A -> measurable_seq (DU A).
Proof. Proof.
...@@ -164,11 +161,6 @@ apply measurable_diff; try easy. ...@@ -164,11 +161,6 @@ apply measurable_diff; try easy.
now apply measurable_union_finite. now apply measurable_union_finite.
Qed. Qed.
Lemma measurable_gen : Incl genE measurable.
Proof.
apply Sigma_algebra_Gen.
Qed.
End measurable_Facts. End measurable_Facts.
...@@ -179,6 +171,11 @@ Section measurable_gen_Facts1. ...@@ -179,6 +171,11 @@ Section measurable_gen_Facts1.
Context {E : Type}. (* Universe. *) Context {E : Type}. (* Universe. *)
Variable genE : (E -> Prop) -> Prop. (* Generator. *) Variable genE : (E -> Prop) -> Prop. (* Generator. *)
Lemma measurable_gen : Incl genE (measurable genE).
Proof.
apply Sigma_algebra_Gen.
Qed.
Lemma measurable_gen_idem : is_Sigma_algebra (measurable genE). Lemma measurable_gen_idem : is_Sigma_algebra (measurable genE).
Proof. Proof.
apply Sigma_algebra_idem. apply Sigma_algebra_idem.
...@@ -203,7 +200,6 @@ Proof. ...@@ -203,7 +200,6 @@ Proof.
apply Sigma_algebra_lub_alt. apply Sigma_algebra_lub_alt.
Qed. Qed.
(* Lemma 501 p. 87 *)
Lemma measurable_gen_ext : Lemma measurable_gen_ext :
forall genE', forall genE',
Incl genE (measurable genE') -> Incl genE' (measurable genE) -> Incl genE (measurable genE') -> Incl genE' (measurable genE) ->
...@@ -212,7 +208,6 @@ Proof. ...@@ -212,7 +208,6 @@ Proof.
apply Sigma_algebra_ext. apply Sigma_algebra_ext.
Qed. Qed.
(* From Lemma 502 p. 87 *)
Lemma measurable_gen_remove : Lemma measurable_gen_remove :
forall A, measurable genE A -> forall A, measurable genE A ->
Incl (measurable (add genE A)) (measurable genE). Incl (measurable (add genE A)) (measurable genE).
...@@ -249,8 +244,10 @@ Variable f : E -> F. ...@@ -249,8 +244,10 @@ Variable f : E -> F.
Variable PE : (E -> Prop) -> Prop. (* Subset system. *) Variable PE : (E -> Prop) -> Prop. (* Subset system. *)
Variable PF : (F -> Prop) -> Prop. (* Subset system. *) Variable PF : (F -> Prop) -> Prop. (* Subset system. *)
(* From Lemma 524 p. 93 (v2) *)
Definition Image : (F -> Prop) -> Prop := fun B => PE (preimage f B). Definition Image : (F -> Prop) -> Prop := fun B => PE (preimage f B).
(* From Lemma 523 p. 93 (v2) *)
Definition Preimage : (E -> Prop) -> Prop := image (preimage f) PF. Definition Preimage : (E -> Prop) -> Prop := image (preimage f) PF.
End measurable_gen_Image_Def. End measurable_gen_Image_Def.
...@@ -311,6 +308,7 @@ Variable genF : (F -> Prop) -> Prop. (* Generator. *) ...@@ -311,6 +308,7 @@ Variable genF : (F -> Prop) -> Prop. (* Generator. *)
Variable f : E -> F. Variable f : E -> F.
(* Lemma 524 p. 93 (v2) *)
Lemma is_Sigma_algebra_Image : is_Sigma_algebra (Image f (measurable genE)). Lemma is_Sigma_algebra_Image : is_Sigma_algebra (Image f (measurable genE)).
Proof. Proof.
apply Sigma_algebra_equiv; repeat split. apply Sigma_algebra_equiv; repeat split.
...@@ -319,6 +317,7 @@ intros B HB; apply measurable_compl; easy. ...@@ -319,6 +317,7 @@ intros B HB; apply measurable_compl; easy.
intros B HB; apply measurable_union_seq; easy. intros B HB; apply measurable_union_seq; easy.
Qed. Qed.
(* Lemma 523 p. 93 (v2) *)
Lemma is_Sigma_algebra_Preimage : Lemma is_Sigma_algebra_Preimage :
is_Sigma_algebra (Preimage f (measurable genF)). is_Sigma_algebra (Preimage f (measurable genF)).
Proof. Proof.
...@@ -354,6 +353,7 @@ Variable genF : (F -> Prop) -> Prop. (* Generator. *) ...@@ -354,6 +353,7 @@ Variable genF : (F -> Prop) -> Prop. (* Generator. *)
Variable f : E -> F. Variable f : E -> F.
(* Lemma 527 pp. 93-94 (v2) *)
Lemma measurable_gen_Preimage : Lemma measurable_gen_Preimage :
measurable (Preimage f genF) = Preimage f (measurable genF). measurable (Preimage f genF) = Preimage f (measurable genF).
Proof. Proof.
...@@ -474,8 +474,10 @@ Section Borel_subsets. ...@@ -474,8 +474,10 @@ Section Borel_subsets.
Context {E : UniformSpace}. (* Uniform universe. *) Context {E : UniformSpace}. (* Uniform universe. *)
(* Definition 517 p. 91 (v2) *)
Definition measurable_Borel := measurable (@open E). Definition measurable_Borel := measurable (@open E).
(* From Lemma 518 p. 91 *)
Lemma measurable_Borel_open : Incl open measurable_Borel. Lemma measurable_Borel_open : Incl open measurable_Borel.
Proof. Proof.
intros A HA; now apply measurable_gen. intros A HA; now apply measurable_gen.
...@@ -515,6 +517,7 @@ Context {E F : UniformSpace}. (* Uniform universes. *) ...@@ -515,6 +517,7 @@ Context {E F : UniformSpace}. (* Uniform universes. *)
Let genExF := Gen_Prod (@open E) (@open F). Let genExF := Gen_Prod (@open E) (@open F).
(* From Lemma 711 p. 137 (v3) (with m := 2 and Y_i := X_i). *)
Lemma measurable_Borel_prod_incl : Incl (measurable genExF) measurable_Borel. Lemma measurable_Borel_prod_incl : Incl (measurable genExF) measurable_Borel.
Proof. Proof.
apply measurable_gen_monot. apply measurable_gen_monot.
...@@ -537,6 +540,7 @@ Let genE1xE2 := Gen_Prod (@open E1) (@open E2). ...@@ -537,6 +540,7 @@ Let genE1xE2 := Gen_Prod (@open E1) (@open E2).
Hypothesis HE1 : is_second_countable E1. Hypothesis HE1 : is_second_countable E1.
Hypothesis HE2 : is_second_countable E2. Hypothesis HE2 : is_second_countable E2.
(* From Lemma 711 p. 137 (v3) (with m := 2 and Y_i := X_i). *)
Lemma measurable_Borel_prod_incl_alt : Lemma measurable_Borel_prod_incl_alt :
Incl measurable_Borel (measurable genE1xE2). Incl measurable_Borel (measurable genE1xE2).
Proof. Proof.
...@@ -554,7 +558,7 @@ apply measurable_Prop. ...@@ -554,7 +558,7 @@ apply measurable_Prop.
apply measurable_prod; apply measurable_gen; easy. apply measurable_prod; apply measurable_gen; easy.
Qed. Qed.
(* From Lem 701 p. 135,136 (RR-9386-v3) (with m := 2 and Y_i := X_i). *) (* From Lemma 711 p. 137 (v3) (with m := 2 and Y_i := X_i). *)
Lemma measurable_Borel_prod_eq : measurable_Borel = measurable genE1xE2. Lemma measurable_Borel_prod_eq : measurable_Borel = measurable genE1xE2.
Proof. Proof.
intros; apply Ext_equiv; split. intros; apply Ext_equiv; split.
...@@ -562,7 +566,7 @@ apply measurable_Borel_prod_incl_alt; easy. ...@@ -562,7 +566,7 @@ apply measurable_Borel_prod_incl_alt; easy.
apply measurable_Borel_prod_incl. apply measurable_Borel_prod_incl.
Qed. Qed.
(* From Lem 701 p. 135,136 (RR-9386-v3) (with m := 2 and Y_i := X_i). *) (* From Lemma 711 p. 137 (v3) (with m := 2 and Y_i := X_i). *)
Lemma measurable_Borel_prod_eq_alt : Lemma measurable_Borel_prod_eq_alt :
measurable_Borel = measurable_Prod (@open E1) (@open E2). measurable_Borel = measurable_Prod (@open E1) (@open E2).
Proof. Proof.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment