Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
Numerical Analysis in Coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Micaela Mayero
Numerical Analysis in Coq
Commits
26dbcad3
Commit
26dbcad3
authored
3 years ago
by
François Clément
Browse files
Options
Downloads
Patches
Plain Diff
Add and move references to RR-9386.
parent
0be32827
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
Lebesgue/Subset_system.v
+6
-1
6 additions, 1 deletion
Lebesgue/Subset_system.v
Lebesgue/measurable.v
+17
-13
17 additions, 13 deletions
Lebesgue/measurable.v
with
23 additions
and
14 deletions
Lebesgue/Subset_system.v
+
6
−
1
View file @
26dbcad3
...
@@ -77,7 +77,8 @@ Inductive Sigma_ring : (U -> Prop) -> Prop :=
...
@@ -77,7 +77,8 @@ Inductive Sigma_ring : (U -> Prop) -> Prop :=
|
Sigma_ring_Union_seq
:
Union_seq
Sigma_ring
.
|
Sigma_ring_Union_seq
:
Union_seq
Sigma_ring
.
(
*
Sigma_algebra
is
the
sigma
-
algebra
generated
by
gen
,
(
*
Sigma_algebra
is
the
sigma
-
algebra
generated
by
gen
,
ie
the
smallest
sigma
-
algebra
containing
gen
.
*
)
ie
the
smallest
sigma
-
algebra
containing
gen
.
From
Definitions
474
p
.
84
and
482
p
.
85
(
v2
)
*
)
Inductive
Sigma_algebra
:
(
U
->
Prop
)
->
Prop
:=
Inductive
Sigma_algebra
:
(
U
->
Prop
)
->
Prop
:=
|
Sigma_algebra_Gen
:
Incl
gen
Sigma_algebra
|
Sigma_algebra_Gen
:
Incl
gen
Sigma_algebra
|
Sigma_algebra_wEmpty
:
wEmpty
Sigma_algebra
|
Sigma_algebra_wEmpty
:
wEmpty
Sigma_algebra
...
@@ -532,6 +533,7 @@ Proof.
...
@@ -532,6 +533,7 @@ Proof.
intros
;
apply
Ext_equiv
;
split
;
now
apply
Lsyst_lub_alt
.
intros
;
apply
Ext_equiv
;
split
;
now
apply
Lsyst_lub_alt
.
Qed
.
Qed
.
(
*
Lemma
501
p
.
87
(
v2
)
*
)
Lemma
Sigma_algebra_ext
:
Lemma
Sigma_algebra_ext
:
Incl
gen0
(
Sigma_algebra
gen1
)
->
Incl
gen0
(
Sigma_algebra
gen1
)
->
Incl
gen1
(
Sigma_algebra
gen0
)
->
Incl
gen1
(
Sigma_algebra
gen0
)
->
...
@@ -1624,6 +1626,7 @@ apply Sigma_algebra_Compl.
...
@@ -1624,6 +1626,7 @@ apply Sigma_algebra_Compl.
apply
Sigma_algebra_Union
.
apply
Sigma_algebra_Union
.
Qed
.
Qed
.
(
*
From
Lemma
475
p
.
84
(
v2
)
*
)
Lemma
Sigma_algebra_wFull
:
Lemma
Sigma_algebra_wFull
:
wFull
(
Sigma_algebra
gen
).
wFull
(
Sigma_algebra
gen
).
Proof
.
Proof
.
...
@@ -1696,6 +1699,7 @@ Proof.
...
@@ -1696,6 +1699,7 @@ Proof.
rewrite
<-
Sigma_algebra_is_Algebra
;
apply
Algebra_Union_disj_finite
.
rewrite
<-
Sigma_algebra_is_Algebra
;
apply
Algebra_Union_disj_finite
.
Qed
.
Qed
.
(
*
From
Lemma
475
p
.
84
(
v2
)
*
)
Lemma
Sigma_algebra_Inter_seq
:
Lemma
Sigma_algebra_Inter_seq
:
Inter_seq
(
Sigma_algebra
gen
).
Inter_seq
(
Sigma_algebra
gen
).
Proof
.
Proof
.
...
@@ -1722,6 +1726,7 @@ Proof.
...
@@ -1722,6 +1726,7 @@ Proof.
apply
Union_seq_disj
,
Sigma_algebra_Union_seq
.
apply
Union_seq_disj
,
Sigma_algebra_Union_seq
.
Qed
.
Qed
.
(
*
From
Lemma
502
p
.
87
(
v2
)
*
)
Lemma
Sigma_algebra_gen_remove
:
Lemma
Sigma_algebra_gen_remove
:
forall
A
,
Sigma_algebra
gen
A
->
forall
A
,
Sigma_algebra
gen
A
->
Incl
(
Sigma_algebra
(
add
gen
A
))
(
Sigma_algebra
gen
).
Incl
(
Sigma_algebra
(
add
gen
A
))
(
Sigma_algebra
gen
).
...
...
This diff is collapsed.
Click to expand it.
Lebesgue/measurable.v
+
17
−
13
View file @
26dbcad3
...
@@ -39,7 +39,6 @@ Section measurable_Facts.
...
@@ -39,7 +39,6 @@ Section measurable_Facts.
Context
{
E
:
Type
}
.
(
*
Universe
.
*
)
Context
{
E
:
Type
}
.
(
*
Universe
.
*
)
Variable
genE
:
(
E
->
Prop
)
->
Prop
.
(
*
Generator
.
*
)
Variable
genE
:
(
E
->
Prop
)
->
Prop
.
(
*
Generator
.
*
)
(
*
From
Definitions
474
p
.
84
and
482
p
.
85
*
)
Definition
measurable
:
(
E
->
Prop
)
->
Prop
:=
Sigma_algebra
genE
.
Definition
measurable
:
(
E
->
Prop
)
->
Prop
:=
Sigma_algebra
genE
.
Definition
measurable_finite
:
(
nat
->
E
->
Prop
)
->
nat
->
Prop
:=
Definition
measurable_finite
:
(
nat
->
E
->
Prop
)
->
nat
->
Prop
:=
...
@@ -73,7 +72,6 @@ Proof.
...
@@ -73,7 +72,6 @@ Proof.
apply
Sigma_algebra_wEmpty
.
apply
Sigma_algebra_wEmpty
.
Qed
.
Qed
.
(
*
From
Lemma
475
p
.
84
*
)
Lemma
measurable_full
:
measurable
fullset
.
(
*
wFull
measurable
.
*
)
Lemma
measurable_full
:
measurable
fullset
.
(
*
wFull
measurable
.
*
)
Proof
.
Proof
.
apply
Sigma_algebra_wFull
.
apply
Sigma_algebra_wFull
.
...
@@ -133,7 +131,6 @@ Proof.
...
@@ -133,7 +131,6 @@ Proof.
apply
Sigma_algebra_Union_seq
.
apply
Sigma_algebra_Union_seq
.
Qed
.
Qed
.
(
*
From
Lemma
475
p
.
84
*
)
Lemma
measurable_inter_seq
:
Lemma
measurable_inter_seq
:
forall
A
,
measurable_seq
A
->
measurable
(
inter_seq
A
).
forall
A
,
measurable_seq
A
->
measurable
(
inter_seq
A
).
(
*
Inter_seq
measurable
.
*
)
(
*
Inter_seq
measurable
.
*
)
...
@@ -155,7 +152,7 @@ intros A N HA n Hn; apply measurable_union_finite.
...
@@ -155,7 +152,7 @@ intros A N HA n Hn; apply measurable_union_finite.
intros
m
Hm
;
apply
HA
;
lia
.
intros
m
Hm
;
apply
HA
;
lia
.
Qed
.
Qed
.
(
*
From
Lemma
480
pp
.
84
-
85
*
)
(
*
From
Lemma
480
pp
.
84
-
85
(
v2
)
*
)
Lemma
measurable_DU
:
Lemma
measurable_DU
:
forall
A
,
measurable_seq
A
->
measurable_seq
(
DU
A
).
forall
A
,
measurable_seq
A
->
measurable_seq
(
DU
A
).
Proof
.
Proof
.
...
@@ -164,11 +161,6 @@ apply measurable_diff; try easy.
...
@@ -164,11 +161,6 @@ apply measurable_diff; try easy.
now
apply
measurable_union_finite
.
now
apply
measurable_union_finite
.
Qed
.
Qed
.
Lemma
measurable_gen
:
Incl
genE
measurable
.
Proof
.
apply
Sigma_algebra_Gen
.
Qed
.
End
measurable_Facts
.
End
measurable_Facts
.
...
@@ -179,6 +171,11 @@ Section measurable_gen_Facts1.
...
@@ -179,6 +171,11 @@ Section measurable_gen_Facts1.
Context
{
E
:
Type
}
.
(
*
Universe
.
*
)
Context
{
E
:
Type
}
.
(
*
Universe
.
*
)
Variable
genE
:
(
E
->
Prop
)
->
Prop
.
(
*
Generator
.
*
)
Variable
genE
:
(
E
->
Prop
)
->
Prop
.
(
*
Generator
.
*
)
Lemma
measurable_gen
:
Incl
genE
(
measurable
genE
).
Proof
.
apply
Sigma_algebra_Gen
.
Qed
.
Lemma
measurable_gen_idem
:
is_Sigma_algebra
(
measurable
genE
).
Lemma
measurable_gen_idem
:
is_Sigma_algebra
(
measurable
genE
).
Proof
.
Proof
.
apply
Sigma_algebra_idem
.
apply
Sigma_algebra_idem
.
...
@@ -203,7 +200,6 @@ Proof.
...
@@ -203,7 +200,6 @@ Proof.
apply
Sigma_algebra_lub_alt
.
apply
Sigma_algebra_lub_alt
.
Qed
.
Qed
.
(
*
Lemma
501
p
.
87
*
)
Lemma
measurable_gen_ext
:
Lemma
measurable_gen_ext
:
forall
genE
'
,
forall
genE
'
,
Incl
genE
(
measurable
genE
'
)
->
Incl
genE
'
(
measurable
genE
)
->
Incl
genE
(
measurable
genE
'
)
->
Incl
genE
'
(
measurable
genE
)
->
...
@@ -212,7 +208,6 @@ Proof.
...
@@ -212,7 +208,6 @@ Proof.
apply
Sigma_algebra_ext
.
apply
Sigma_algebra_ext
.
Qed
.
Qed
.
(
*
From
Lemma
502
p
.
87
*
)
Lemma
measurable_gen_remove
:
Lemma
measurable_gen_remove
:
forall
A
,
measurable
genE
A
->
forall
A
,
measurable
genE
A
->
Incl
(
measurable
(
add
genE
A
))
(
measurable
genE
).
Incl
(
measurable
(
add
genE
A
))
(
measurable
genE
).
...
@@ -249,8 +244,10 @@ Variable f : E -> F.
...
@@ -249,8 +244,10 @@ Variable f : E -> F.
Variable
PE
:
(
E
->
Prop
)
->
Prop
.
(
*
Subset
system
.
*
)
Variable
PE
:
(
E
->
Prop
)
->
Prop
.
(
*
Subset
system
.
*
)
Variable
PF
:
(
F
->
Prop
)
->
Prop
.
(
*
Subset
system
.
*
)
Variable
PF
:
(
F
->
Prop
)
->
Prop
.
(
*
Subset
system
.
*
)
(
*
From
Lemma
524
p
.
93
(
v2
)
*
)
Definition
Image
:
(
F
->
Prop
)
->
Prop
:=
fun
B
=>
PE
(
preimage
f
B
).
Definition
Image
:
(
F
->
Prop
)
->
Prop
:=
fun
B
=>
PE
(
preimage
f
B
).
(
*
From
Lemma
523
p
.
93
(
v2
)
*
)
Definition
Preimage
:
(
E
->
Prop
)
->
Prop
:=
image
(
preimage
f
)
PF
.
Definition
Preimage
:
(
E
->
Prop
)
->
Prop
:=
image
(
preimage
f
)
PF
.
End
measurable_gen_Image_Def
.
End
measurable_gen_Image_Def
.
...
@@ -311,6 +308,7 @@ Variable genF : (F -> Prop) -> Prop. (* Generator. *)
...
@@ -311,6 +308,7 @@ Variable genF : (F -> Prop) -> Prop. (* Generator. *)
Variable
f
:
E
->
F
.
Variable
f
:
E
->
F
.
(
*
Lemma
524
p
.
93
(
v2
)
*
)
Lemma
is_Sigma_algebra_Image
:
is_Sigma_algebra
(
Image
f
(
measurable
genE
)).
Lemma
is_Sigma_algebra_Image
:
is_Sigma_algebra
(
Image
f
(
measurable
genE
)).
Proof
.
Proof
.
apply
Sigma_algebra_equiv
;
repeat
split
.
apply
Sigma_algebra_equiv
;
repeat
split
.
...
@@ -319,6 +317,7 @@ intros B HB; apply measurable_compl; easy.
...
@@ -319,6 +317,7 @@ intros B HB; apply measurable_compl; easy.
intros
B
HB
;
apply
measurable_union_seq
;
easy
.
intros
B
HB
;
apply
measurable_union_seq
;
easy
.
Qed
.
Qed
.
(
*
Lemma
523
p
.
93
(
v2
)
*
)
Lemma
is_Sigma_algebra_Preimage
:
Lemma
is_Sigma_algebra_Preimage
:
is_Sigma_algebra
(
Preimage
f
(
measurable
genF
)).
is_Sigma_algebra
(
Preimage
f
(
measurable
genF
)).
Proof
.
Proof
.
...
@@ -354,6 +353,7 @@ Variable genF : (F -> Prop) -> Prop. (* Generator. *)
...
@@ -354,6 +353,7 @@ Variable genF : (F -> Prop) -> Prop. (* Generator. *)
Variable
f
:
E
->
F
.
Variable
f
:
E
->
F
.
(
*
Lemma
527
pp
.
93
-
94
(
v2
)
*
)
Lemma
measurable_gen_Preimage
:
Lemma
measurable_gen_Preimage
:
measurable
(
Preimage
f
genF
)
=
Preimage
f
(
measurable
genF
).
measurable
(
Preimage
f
genF
)
=
Preimage
f
(
measurable
genF
).
Proof
.
Proof
.
...
@@ -474,8 +474,10 @@ Section Borel_subsets.
...
@@ -474,8 +474,10 @@ Section Borel_subsets.
Context
{
E
:
UniformSpace
}
.
(
*
Uniform
universe
.
*
)
Context
{
E
:
UniformSpace
}
.
(
*
Uniform
universe
.
*
)
(
*
Definition
517
p
.
91
(
v2
)
*
)
Definition
measurable_Borel
:=
measurable
(
@
open
E
).
Definition
measurable_Borel
:=
measurable
(
@
open
E
).
(
*
From
Lemma
518
p
.
91
*
)
Lemma
measurable_Borel_open
:
Incl
open
measurable_Borel
.
Lemma
measurable_Borel_open
:
Incl
open
measurable_Borel
.
Proof
.
Proof
.
intros
A
HA
;
now
apply
measurable_gen
.
intros
A
HA
;
now
apply
measurable_gen
.
...
@@ -515,6 +517,7 @@ Context {E F : UniformSpace}. (* Uniform universes. *)
...
@@ -515,6 +517,7 @@ Context {E F : UniformSpace}. (* Uniform universes. *)
Let
genExF
:=
Gen_Prod
(
@
open
E
)
(
@
open
F
).
Let
genExF
:=
Gen_Prod
(
@
open
E
)
(
@
open
F
).
(
*
From
Lemma
711
p
.
137
(
v3
)
(
with
m
:=
2
and
Y_i
:=
X_i
).
*
)
Lemma
measurable_Borel_prod_incl
:
Incl
(
measurable
genExF
)
measurable_Borel
.
Lemma
measurable_Borel_prod_incl
:
Incl
(
measurable
genExF
)
measurable_Borel
.
Proof
.
Proof
.
apply
measurable_gen_monot
.
apply
measurable_gen_monot
.
...
@@ -537,6 +540,7 @@ Let genE1xE2 := Gen_Prod (@open E1) (@open E2).
...
@@ -537,6 +540,7 @@ Let genE1xE2 := Gen_Prod (@open E1) (@open E2).
Hypothesis
HE1
:
is_second_countable
E1
.
Hypothesis
HE1
:
is_second_countable
E1
.
Hypothesis
HE2
:
is_second_countable
E2
.
Hypothesis
HE2
:
is_second_countable
E2
.
(
*
From
Lemma
711
p
.
137
(
v3
)
(
with
m
:=
2
and
Y_i
:=
X_i
).
*
)
Lemma
measurable_Borel_prod_incl_alt
:
Lemma
measurable_Borel_prod_incl_alt
:
Incl
measurable_Borel
(
measurable
genE1xE2
).
Incl
measurable_Borel
(
measurable
genE1xE2
).
Proof
.
Proof
.
...
@@ -554,7 +558,7 @@ apply measurable_Prop.
...
@@ -554,7 +558,7 @@ apply measurable_Prop.
apply
measurable_prod
;
apply
measurable_gen
;
easy
.
apply
measurable_prod
;
apply
measurable_gen
;
easy
.
Qed
.
Qed
.
(
*
From
Lem
7
0
1
p
.
13
5
,
136
(
RR
-
9386
-
v3
)
(
with
m
:=
2
and
Y_i
:=
X_i
).
*
)
(
*
From
Lem
ma
7
1
1
p
.
13
7
(
v3
)
(
with
m
:=
2
and
Y_i
:=
X_i
).
*
)
Lemma
measurable_Borel_prod_eq
:
measurable_Borel
=
measurable
genE1xE2
.
Lemma
measurable_Borel_prod_eq
:
measurable_Borel
=
measurable
genE1xE2
.
Proof
.
Proof
.
intros
;
apply
Ext_equiv
;
split
.
intros
;
apply
Ext_equiv
;
split
.
...
@@ -562,7 +566,7 @@ apply measurable_Borel_prod_incl_alt; easy.
...
@@ -562,7 +566,7 @@ apply measurable_Borel_prod_incl_alt; easy.
apply
measurable_Borel_prod_incl
.
apply
measurable_Borel_prod_incl
.
Qed
.
Qed
.
(
*
From
Lem
7
0
1
p
.
13
5
,
136
(
RR
-
9386
-
v3
)
(
with
m
:=
2
and
Y_i
:=
X_i
).
*
)
(
*
From
Lem
ma
7
1
1
p
.
13
7
(
v3
)
(
with
m
:=
2
and
Y_i
:=
X_i
).
*
)
Lemma
measurable_Borel_prod_eq_alt
:
Lemma
measurable_Borel_prod_eq_alt
:
measurable_Borel
=
measurable_Prod
(
@
open
E1
)
(
@
open
E2
).
measurable_Borel
=
measurable_Prod
(
@
open
E1
)
(
@
open
E2
).
Proof
.
Proof
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment