Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
Numerical Analysis in Coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Micaela Mayero
Numerical Analysis in Coq
Commits
31df78ac
Commit
31df78ac
authored
1 year ago
by
François Clément
Browse files
Options
Downloads
Patches
Plain Diff
Move stiff around.
parent
a849ca47
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
FEM/Compl/Function_compl.v
+19
-22
19 additions, 22 deletions
FEM/Compl/Function_compl.v
with
19 additions
and
22 deletions
FEM/Compl/Function_compl.v
+
19
−
22
View file @
31df78ac
...
...
@@ -123,7 +123,6 @@ End Inhabited_Facts.
Section
Image_preimage_Facts0
.
Context
{
T1
T2
:
Type
}
.
Variable
f
:
T1
->
T2
.
Lemma
im_dec
:
forall
x2
,
{
x1
|
f
x1
=
x2
}
+
{
forall
x1
,
f
x1
<>
x2
}
.
...
...
@@ -232,11 +231,12 @@ End Comp_Facts2.
Section
Comp_Facts3
.
Context
{
T1
T2
T3
:
Type
}
.
Context
{
g
h
:
T1
->
T2
}
.
Context
{
f
:
T2
->
T3
}
.
Hypothesis
Hf
:
injective
f
.
Lemma
comp_inj_r
:
forall
{
g
h
:
T1
->
T2
}
,
f
\
o
g
=
f
\
o
h
->
g
=
h
.
Proof
.
move
=>
>
/
fun_ext_rev
H
;
apply
fun_ext
;
intro
;
apply
Hf
,
H
.
Qed
.
Lemma
comp_inj_r
:
f
\
o
g
=
f
\
o
h
->
g
=
h
.
Proof
.
move
=>
/
fun_ext_rev
H
;
apply
fun_ext
;
intro
;
apply
Hf
,
H
.
Qed
.
End
Comp_Facts3
.
...
...
@@ -276,12 +276,12 @@ Context {f : T1 -> T2}.
Lemma
Rg_correct
:
forall
{
x2
}
x1
,
f
x1
=
x2
->
Rg
f
x2
.
Proof
.
move
=>
x2
x1
<-
;
easy
.
Qed
.
Lemma
Rg_ex
:
forall
{
x2
}
,
Rg
f
x2
<->
exists
x1
,
f
x1
=
x2
.
Proof
.
intros
;
split
;
[
intros
[
x1
_
];
exists
x1
|
move
=>
[
x1
<-
]];
easy
.
Qed
.
Lemma
Rg_ext
:
forall
(
g
:
T1
->
T2
),
same_fun
f
g
->
Rg
f
=
Rg
g
.
Proof
.
move
=>
g
/
fun_ext
->
;
easy
.
Qed
.
Lemma
Rg_ex
:
forall
{
x2
}
,
Rg
f
x2
<->
exists
x1
,
f
x1
=
x2
.
Proof
.
intros
;
split
;
[
intros
[
x1
_
];
exists
x1
|
move
=>
[
x1
<-
]];
easy
.
Qed
.
Lemma
Rg_compl
:
forall
{
x2
}
,
~
Rg
f
x2
<->
forall
x1
,
f
x1
<>
x2
.
Proof
.
intros
;
rewrite
-
iff_not_r_equiv
not_all_not_ex_equiv
;
apply
Rg_ex
.
Qed
.
...
...
@@ -305,8 +305,12 @@ Section Inj_Facts.
Context
{
T1
T2
T3
:
Type
}
.
Context
{
f
:
T1
->
T2
}
.
Lemma
fun_from_empty_is_inj
:
~
inhabited
T1
->
injective
f
.
Proof
.
move
=>>
HT1
x1
;
contradict
HT1
;
easy
.
Qed
.
Lemma
inj_ext
:
forall
{
g
:
T1
->
T2
}
,
same_fun
f
g
->
injective
f
->
injective
g
.
Proof
.
move
=>>
H
Hf
;
apply
(
eq_inj
Hf
H
).
Qed
.
Lemma
inj_equiv
:
injective
f
->
forall
x1
y1
,
f
x1
=
f
y1
<->
x1
=
y1
.
Proof
.
intros
Hf
x1
y1
;
split
;
[
apply
Hf
|
apply
f_equal
].
Qed
.
Lemma
inj_contra
:
injective
f
->
forall
x1
y1
,
x1
<>
y1
->
f
x1
<>
f
y1
.
Proof
.
intros
Hf
x1
y1
;
rewrite
-
contra_equiv
;
apply
Hf
.
Qed
.
...
...
@@ -318,13 +322,6 @@ Lemma inj_contra_equiv :
injective
f
<->
forall
x1
y1
,
x1
<>
y1
->
f
x1
<>
f
y1
.
Proof
.
split
;
[
apply
inj_contra
|
apply
inj_contra_rev
].
Qed
.
Lemma
inj_equiv
:
injective
f
->
forall
x1
y1
,
f
x1
=
f
y1
<->
x1
=
y1
.
Proof
.
intros
Hf
x1
y1
;
split
;
[
apply
Hf
|
apply
f_equal
].
Qed
.
Lemma
inj_ext
:
forall
{
g
:
T1
->
T2
}
,
same_fun
f
g
->
injective
f
->
injective
g
.
Proof
.
move
=>>
H
Hf
;
apply
(
eq_inj
Hf
H
).
Qed
.
Lemma
inj_comp_compat
:
forall
{
g
:
T2
->
T3
}
,
injective
f
->
injective
g
->
injective
(
g
\
o
f
).
Proof
.
intros
;
apply
inj_comp
;
easy
.
Qed
.
...
...
@@ -332,6 +329,9 @@ Proof. intros; apply inj_comp; easy. Qed.
Lemma
inj_comp_reg
:
forall
(
g
:
T2
->
T3
),
injective
(
g
\
o
f
)
->
injective
f
.
Proof
.
intros
g
H
;
apply
(
inj_compr
H
).
Qed
.
Lemma
fun_from_empty_is_inj
:
~
inhabited
T1
->
injective
f
.
Proof
.
move
=>>
HT1
x1
;
contradict
HT1
;
easy
.
Qed
.
End
Inj_Facts
.
...
...
@@ -384,7 +384,6 @@ End Surj_Facts.
Section
Can_Facts1
.
Context
{
T1
T2
:
Type
}
.
Context
{
f
f
'
:
T1
->
T2
}
.
Context
{
g
g
'
:
T2
->
T1
}
.
...
...
@@ -400,7 +399,6 @@ End Can_Facts1.
Section
Can_Facts2
.
Context
{
T1
T2
:
Type
}
.
Context
{
f
f
'
:
T1
->
T2
}
.
Context
{
g
g
'
:
T2
->
T1
}
.
...
...
@@ -467,9 +465,12 @@ End Can_Facts4.
Section
Bij_Facts
.
Context
{
T1
T2
T3
:
Type
}
.
Context
{
f
:
T1
->
T2
}
.
Lemma
bij_ext
:
forall
{
g
:
T1
->
T2
}
,
same_fun
f
g
->
bijective
f
->
bijective
g
.
Proof
.
move
=>>
H
Hf
;
apply
(
eq_bij
Hf
H
).
Qed
.
Lemma
bij_surj
:
bijective
f
->
surjective
f
.
Proof
.
intros
[
g
_
H
]
x2
;
exists
(
g
x2
);
rewrite
H
;
easy
.
Qed
.
...
...
@@ -497,10 +498,6 @@ Qed.
Lemma
bij_ex_uniq_equiv
:
bijective
f
<->
forall
x2
,
exists
!
x1
,
f
x1
=
x2
.
Proof
.
split
;
[
apply
bij_ex_uniq
|
apply
bij_ex_uniq_rev
].
Qed
.
Lemma
bij_ext
:
forall
{
g
:
T1
->
T2
}
,
same_fun
f
g
->
bijective
f
->
bijective
g
.
Proof
.
move
=>>
H
Hf
;
apply
(
eq_bij
Hf
H
).
Qed
.
Lemma
bij_comp_compat
:
forall
{
g
:
T2
->
T3
}
,
bijective
f
->
bijective
g
->
bijective
(
g
\
o
f
).
Proof
.
intros
;
apply
bij_comp
;
easy
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment