Skip to content
Snippets Groups Projects
Commit 4c738a7c authored by François Clément's avatar François Clément
Browse files

Simplify some proofs.

Some renaming.
Proof of is_Basisp_Union_any_closure completed.
parent 1b4e22a7
No related branches found
No related tags found
No related merge requests found
......@@ -180,13 +180,10 @@ Qed.
Lemma Open_Union_any : Union_any (Open genU).
Proof.
intros PA [A0 HA0] HPA.
rewrite unionp_any_unionf_any_eq; apply Open_Unionf_any.
apply inhabits; exists A0; easy.
intros [A HA]; auto.
apply Unionf_any_Union_any_equiv, Open_Unionf_any.
Qed.
Lemma Union_any_inter_is_Open :
Lemma Union_any_closure_is_Open :
forall (P : set_system U),
unionp_any P = fullset -> Union_any_inter P ->
is_Open (Union_any_closure P).
......@@ -261,13 +258,10 @@ Qed.
Lemma Closed_Inter_any : Inter_any (Closed genU).
Proof.
intros PA [A0 HA0] HPA.
rewrite interp_any_interf_any_eq; apply Closed_Interf_any.
apply inhabits; exists A0; easy.
intros [A HA]; auto.
apply Interf_any_Inter_any_equiv, Closed_Interf_any.
Qed.
Lemma Inter_any_union_is_Closed :
Lemma Inter_any_closure_is_Closed :
forall (P : set_system U),
interp_any P = emptyset -> Inter_any_union P ->
is_Closed (Inter_any_closure P).
......@@ -349,7 +343,7 @@ apply Closed_complp_any_is_complp_any_Open.
apply complp_any_Open_is_Closed_complp_any.
Qed.
Lemma is_Open_is_Closed_complp_any :
Lemma is_Open_is_Closed_complp_any_equiv :
forall (P : set_system U), is_Open P <-> is_Closed (complp_any P).
Proof.
intros; rewrite is_Open_equiv, is_Closed_equiv.
......@@ -357,10 +351,10 @@ rewrite <- wFull_wEmpty_complp_any, <- wEmpty_wFull_complp_any,
<- Inter_Union_complp_any, <- Unionf_any_Interf_any_complp_any; easy.
Qed.
Lemma is_Closed_is_Open_complp_any :
Lemma is_Closed_is_Open_complp_any_equiv :
forall (P : set_system U), is_Closed P <-> is_Open (complp_any P).
Proof.
intros; rewrite is_Open_is_Closed_complp_any, complp_any_invol; easy.
intros; rewrite is_Open_is_Closed_complp_any_equiv, complp_any_invol; easy.
Qed.
End Set_system_Facts5.
......@@ -408,22 +402,18 @@ Qed.
Variable P : set_system U.
Hypothesis HP1 : unionp_any P = fullset.
Hypothesis HP2 : Union_any_inter P.
Lemma is_Basisp_alt : is_Basisp (Union_any_closure P) P.
Lemma is_Basisp_Union_any_closure : is_Basisp (Union_any_closure P) P.
Proof.
split.
apply Union_any_closure_Gen.
intros A HA; induction HA as [Q HQ].
apply set_ext_equiv; split; intros x [B [HB1 HB2]].
apply set_ext_equiv; split; intros x [B [HB Hx]].
(* *)
exists B; repeat split; try easy; auto.
exists B; repeat split; auto.
intros y Hy; exists B; easy.
(* *)
destruct HB1 as [HB0 HB1]; exists B; split; auto.
Admitted.
destruct HB as [HB1 HB2]; auto.
Qed.
End Basis_Facts1.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment