Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
Numerical Analysis in Coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Micaela Mayero
Numerical Analysis in Coq
Commits
4c738a7c
Commit
4c738a7c
authored
2 years ago
by
François Clément
Browse files
Options
Downloads
Patches
Plain Diff
Simplify some proofs.
Some renaming. Proof of is_Basisp_Union_any_closure completed.
parent
1b4e22a7
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Lebesgue/Set_theory/Set_system/Set_system_any.v
+12
-22
12 additions, 22 deletions
Lebesgue/Set_theory/Set_system/Set_system_any.v
with
12 additions
and
22 deletions
Lebesgue/Set_theory/Set_system/Set_system_any.v
+
12
−
22
View file @
4c738a7c
...
...
@@ -180,13 +180,10 @@ Qed.
Lemma
Open_Union_any
:
Union_any
(
Open
genU
).
Proof
.
intros
PA
[
A0
HA0
]
HPA
.
rewrite
unionp_any_unionf_any_eq
;
apply
Open_Unionf_any
.
apply
inhabits
;
exists
A0
;
easy
.
intros
[
A
HA
];
auto
.
apply
Unionf_any_Union_any_equiv
,
Open_Unionf_any
.
Qed
.
Lemma
Union_any_
inter
_is_Open
:
Lemma
Union_any_
closure
_is_Open
:
forall
(
P
:
set_system
U
),
unionp_any
P
=
fullset
->
Union_any_inter
P
->
is_Open
(
Union_any_closure
P
).
...
...
@@ -261,13 +258,10 @@ Qed.
Lemma
Closed_Inter_any
:
Inter_any
(
Closed
genU
).
Proof
.
intros
PA
[
A0
HA0
]
HPA
.
rewrite
interp_any_interf_any_eq
;
apply
Closed_Interf_any
.
apply
inhabits
;
exists
A0
;
easy
.
intros
[
A
HA
];
auto
.
apply
Interf_any_Inter_any_equiv
,
Closed_Interf_any
.
Qed
.
Lemma
Inter_any_
union
_is_Closed
:
Lemma
Inter_any_
closure
_is_Closed
:
forall
(
P
:
set_system
U
),
interp_any
P
=
emptyset
->
Inter_any_union
P
->
is_Closed
(
Inter_any_closure
P
).
...
...
@@ -349,7 +343,7 @@ apply Closed_complp_any_is_complp_any_Open.
apply
complp_any_Open_is_Closed_complp_any
.
Qed
.
Lemma
is_Open_is_Closed_complp_any
:
Lemma
is_Open_is_Closed_complp_any
_equiv
:
forall
(
P
:
set_system
U
),
is_Open
P
<->
is_Closed
(
complp_any
P
).
Proof
.
intros
;
rewrite
is_Open_equiv
,
is_Closed_equiv
.
...
...
@@ -357,10 +351,10 @@ rewrite <- wFull_wEmpty_complp_any, <- wEmpty_wFull_complp_any,
<-
Inter_Union_complp_any
,
<-
Unionf_any_Interf_any_complp_any
;
easy
.
Qed
.
Lemma
is_Closed_is_Open_complp_any
:
Lemma
is_Closed_is_Open_complp_any
_equiv
:
forall
(
P
:
set_system
U
),
is_Closed
P
<->
is_Open
(
complp_any
P
).
Proof
.
intros
;
rewrite
is_Open_is_Closed_complp_any
,
complp_any_invol
;
easy
.
intros
;
rewrite
is_Open_is_Closed_complp_any
_equiv
,
complp_any_invol
;
easy
.
Qed
.
End
Set_system_Facts5
.
...
...
@@ -408,22 +402,18 @@ Qed.
Variable
P
:
set_system
U
.
Hypothesis
HP1
:
unionp_any
P
=
fullset
.
Hypothesis
HP2
:
Union_any_inter
P
.
Lemma
is_Basisp_alt
:
is_Basisp
(
Union_any_closure
P
)
P
.
Lemma
is_Basisp_Union_any_closure
:
is_Basisp
(
Union_any_closure
P
)
P
.
Proof
.
split
.
apply
Union_any_closure_Gen
.
intros
A
HA
;
induction
HA
as
[
Q
HQ
].
apply
set_ext_equiv
;
split
;
intros
x
[
B
[
HB
1
H
B2
]].
apply
set_ext_equiv
;
split
;
intros
x
[
B
[
HB
H
x
]].
(
*
*
)
exists
B
;
repeat
split
;
try
easy
;
auto
.
exists
B
;
repeat
split
;
auto
.
intros
y
Hy
;
exists
B
;
easy
.
(
*
*
)
destruct
HB1
as
[
HB0
HB1
];
exists
B
;
split
;
auto
.
Admitted
.
destruct
HB
as
[
HB1
HB2
];
auto
.
Qed
.
End
Basis_Facts1
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment