Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
Numerical Analysis in Coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Micaela Mayero
Numerical Analysis in Coq
Commits
5090f012
Commit
5090f012
authored
3 years ago
by
François Clément
Browse files
Options
Downloads
Patches
Plain Diff
Add Cartesian product and some of its properties.
parent
55b0dd2d
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Lebesgue/Subset.v
+52
-1
52 additions, 1 deletion
Lebesgue/Subset.v
with
52 additions
and
1 deletion
Lebesgue/Subset.v
+
52
−
1
View file @
5090f012
...
...
@@ -79,10 +79,24 @@ Definition partition : Prop :=
End
Base_Def
.
Section
Prod_Def
.
Context
{
U1
U2
:
Type
}
.
(
*
Universes
.
*
)
Variable
A1
:
U1
->
Prop
.
(
*
Subset
.
*
)
Variable
A2
:
U2
->
Prop
.
(
*
Subset
.
*
)
Definition
prod
:
U1
*
U2
->
Prop
:=
fun
x
=>
A1
(
fst
x
)
/
\
A2
(
snd
x
).
End
Prod_Def
.
Ltac
subset_unfold
:=
unfold
emptyset
,
fullset
,
empty
,
full
,
incl
,
same
,
disj
,
compl
,
union
,
inter
,
diff
,
sym_diff
.
compl
,
union
,
inter
,
diff
,
sym_diff
,
prod
.
Ltac
subset_auto
:=
subset_unfold
;
try
tauto
;
try
easy
.
...
...
@@ -1513,3 +1527,40 @@ apply partition_inter_l.
Qed
.
End
Partition_Facts
.
Section
Prod_Facts
.
(
**
Facts
about
Cartesian
product
.
*
)
Context
{
U1
U2
:
Type
}
.
(
*
Universes
.
*
)
Lemma
prod_fullset
:
prod
(
@
fullset
U1
)
(
@
fullset
U2
)
=
fullset
.
Proof
.
apply
subset_ext
;
subset_auto
.
Qed
.
Variable
A1
B1
:
U1
->
Prop
.
(
*
Subset
.
*
)
Variable
A2
B2
:
U2
->
Prop
.
(
*
Subset
.
*
)
Lemma
prod_inter
:
inter
(
prod
A1
A2
)
(
prod
B1
B2
)
=
prod
(
inter
A1
B1
)
(
inter
A2
B2
).
Proof
.
apply
subset_ext
;
subset_auto
.
Qed
.
Lemma
prod_compl_union
:
compl
(
prod
A1
A2
)
=
union
(
prod
(
compl
A1
)
A2
)
(
prod
fullset
(
compl
A2
)).
Proof
.
apply
subset_ext
;
intros
x
;
subset_auto
.
Qed
.
Lemma
prod_compl_disj
:
disj
(
prod
(
compl
A1
)
A2
)
(
prod
fullset
(
compl
A2
)).
Proof
.
subset_auto
.
Qed
.
End
Prod_Facts
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment