Skip to content
Snippets Groups Projects
Commit 545cb2e5 authored by François Clément's avatar François Clément
Browse files

Migration of measurable_fun_compose, measurable_fun_swap_var, and

measurable_fun_swap.
parent b3db4a34
No related branches found
No related tags found
No related merge requests found
...@@ -22,7 +22,7 @@ COPYING file for more details. ...@@ -22,7 +22,7 @@ COPYING file for more details.
Some proof paths may differ. *) Some proof paths may differ. *)
(*From Coquelicot Require Import Coquelicot.*) From Coquelicot Require Import Coquelicot.
Require Import Subset Subset_dec Subset_seq. Require Import Subset Subset_dec Subset_seq.
Require Import Subset_system_base Subset_system measurable. Require Import Subset_system_base Subset_system measurable.
...@@ -101,7 +101,7 @@ Qed. ...@@ -101,7 +101,7 @@ Qed.
End Measurable_fun_gen_ext. End Measurable_fun_gen_ext.
Section Measurable_fun_composition. Section Measurable_fun_Facts1.
Context {E1 E2 E3 : Type}. Context {E1 E2 E3 : Type}.
...@@ -110,27 +110,21 @@ Variable genE2 : (E2 -> Prop) -> Prop. ...@@ -110,27 +110,21 @@ Variable genE2 : (E2 -> Prop) -> Prop.
Variable genE3 : (E3 -> Prop) -> Prop. Variable genE3 : (E3 -> Prop) -> Prop.
(* Lemma 530 p. 94 *) (* Lemma 530 p. 94 *)
Lemma measurable_fun_composition : Lemma measurable_fun_compose :
forall (f12 : E1 -> E2) (f23 : E2 -> E3), forall (f12 : E1 -> E2) (f23 : E2 -> E3),
measurable_fun genE1 genE2 f12 -> measurable_fun genE1 genE2 f12 ->
measurable_fun genE2 genE3 f23 -> measurable_fun genE2 genE3 f23 ->
measurable_fun genE1 genE3 (fun x1 => f23 (f12 x1)). measurable_fun genE1 genE3 (compose f23 f12).
Proof. Proof.
intros f12 f23 H12 H23. unfold measurable_fun in *. intros f12 f23 H12 H23; unfold measurable_fun.
apply Incl_trans with (Preimage f12 (measurable genE2)). rewrite Preimage_compose.
apply H23. eapply Incl_trans; [apply Preimage_monot, H23 | apply H12].
Admitted.
_ [A3 HA3].
apply H12.
apply H23.
with (A2 := fun x1 => A2 (f23 x2)).
now apply H2.
Qed.
End Measurable_fun_composition. End Measurable_fun_Facts1.
Section Measurable_fun_swap. Section Measurable_fun_Facts2.
Context {E1 E2 F : Type}. Context {E1 E2 F : Type}.
...@@ -138,45 +132,41 @@ Context {genE1 : (E1 -> Prop) -> Prop}. ...@@ -138,45 +132,41 @@ Context {genE1 : (E1 -> Prop) -> Prop}.
Context {genE2 : (E2 -> Prop) -> Prop}. Context {genE2 : (E2 -> Prop) -> Prop}.
Context {genF : (F -> Prop) -> Prop}. Context {genF : (F -> Prop) -> Prop}.
Let genE1xE2 := Gen_Product genE1 genE2. Let genE1xE2 := Gen_Prod genE1 genE2.
Let genE2xE1 := Gen_Product genE2 genE1. Let genE2xE1 := Gen_Prod genE2 genE1.
Let swap_var := swap (fun x : E1 * E2 => x). Let swap_var := swap (fun x : E1 * E2 => x).
Lemma measurable_fun_swap_var : Lemma measurable_fun_swap_var : measurable_fun genE2xE1 genE1xE2 swap_var.
measurable_fun genE2xE1 genE1xE2 swap_var.
Proof. Proof.
intros A HA; apply measurable_swap; easy. intros A21 [A12 HA12]; apply measurable_swap; easy.
Qed. Qed.
Lemma measurable_fun_swap : Lemma measurable_fun_swap :
forall f, measurable_fun genE1xE2 genF f -> measurable_fun genE2xE1 genF (swap f). forall f, measurable_fun genE1xE2 genF f -> measurable_fun genE2xE1 genF (swap f).
Proof. Proof.
intros f Hf. intros f Hf.
apply measurable_fun_composition with (2:= Hf). apply measurable_fun_compose with (2 := Hf).
apply measurable_fun_swap_var. apply measurable_fun_swap_var.
Qed. Qed.
End Measurable_fun_swap. End Measurable_fun_Facts2.
Section Measurable_fun_continuous. Section Measurable_fun_Facts3.
Context {E F : UniformSpace}. Context {E F : UniformSpace}.
(* Lemma 529 p. 94 *) (* Lemma 529 p. 94 (v2) *)
Lemma measurable_fun_continuous : Lemma measurable_fun_continuous :
forall (f : E -> F), forall (f : E -> F), (forall x, continuous f x) -> measurable_fun open open f.
(forall x, continuous f x) ->
measurable_fun open open f.
Proof. Proof.
intros f H. intros f Hf; apply measurable_fun_equiv.
apply measurable_fun_gen. intros A HA; apply measurable_gen.
intros A HA.
apply measurable_gen.
intros x Hx. intros x Hx.
apply H. apply Hf.
now apply HA. now apply HA.
Qed. Qed.
End Measurable_fun_continuous. End Measurable_fun_Facts3.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment