Skip to content
Snippets Groups Projects
Commit 5b648771 authored by François Clément's avatar François Clément
Browse files

Rm wrong Lift_Trace_is_Subset_rev.

Go for functional equalities.
parent b7ed6bcd
No related branches found
No related tags found
No related merge requests found
...@@ -376,23 +376,9 @@ induction HB as [P B HB1 HB2]. ...@@ -376,23 +376,9 @@ induction HB as [P B HB1 HB2].
apply inter_right in HB2; rewrite <- HB2; easy. apply inter_right in HB2; rewrite <- HB2; easy.
Qed. Qed.
Lemma Lift_Trace_is_Subset_rev : Lemma Trace_Lift : compose (Trace A) (Lift A) = id.
forall (P : set_system U),
Union_seq P -> compose (Lift A) (Trace A) P = Subset A P -> P A.
Proof.
intros P HP1; rewrite Lift_Trace; setp_any_unfold; intros HP2'.
assert (HP2 : forall B, image (inter A) P B <-> P B /\ incl B A).
intros; rewrite <- Subset_equiv, <- HP2'; easy.
clear HP2'.
Admitted.
Lemma Trace_Lift : forall (PA : subset_system A), Trace A (Lift A PA) = PA.
Proof. Proof.
intros PA; unfold Trace, tracep_any, Lift, liftp_any. rewrite <- image_id, <- trace_lift, image_compose; easy.
rewrite <- image_compose, trace_lift; apply image_id.
Qed. Qed.
Lemma Trace_monot: Lemma Trace_monot:
...@@ -401,13 +387,13 @@ Proof. ...@@ -401,13 +387,13 @@ Proof.
intros P1 P2 HP BA [B HB]; apply Im; auto. intros P1 P2 HP BA [B HB]; apply Im; auto.
Qed. Qed.
Lemma Trace_Lift_full : forall (PA : subset_system A), Trace A (Lift_full A PA) = PA. Lemma Trace_Lift_full : compose (Trace A) (Lift_full A) = id.
Proof. Proof.
intros PA; apply Ext_equiv; split; intros BA HBA. apply fun_ext; intros PA; apply Ext_equiv; split; intros BA HBA.
induction HBA as [B HB]; easy. induction HBA as [B HB]; easy.
apply Trace_monot with (Lift A PA). apply Trace_monot with (Lift A PA).
apply Lift_Lift_full. apply Lift_Lift_full.
rewrite Trace_Lift; easy. rewrite <- compose_eq, Trace_Lift; easy.
Qed. Qed.
Lemma Trace_equiv : forall (P : set_system U) B, Trace A P B <-> exists C, P C /\ B = trace A C. Lemma Trace_equiv : forall (P : set_system U) B, Trace A P B <-> exists C, P C /\ B = trace A C.
...@@ -493,7 +479,7 @@ Lemma Preimage_compose : ...@@ -493,7 +479,7 @@ Lemma Preimage_compose :
Proof. Proof.
intros P3; unfold Preimage; set_ext_auto A1 HA1; induction HA1 as [A3 HA3]. intros P3; unfold Preimage; set_ext_auto A1 HA1; induction HA1 as [A3 HA3].
rewrite preimage_compose; repeat apply Im; easy. rewrite preimage_compose; repeat apply Im; easy.
induction HA3 as [A3 HA3]; unfold preimagep_any; rewrite preimage_compose_fun. induction HA3 as [A3 HA3]; unfold preimagep_any; rewrite preimage_compose.
apply Im with (f := fun A => preimage f21 (preimage f32 A)); easy. apply Im with (f := fun A => preimage f21 (preimage f32 A)); easy.
Qed. Qed.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment