Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
Numerical Analysis in Coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Micaela Mayero
Numerical Analysis in Coq
Commits
602c59aa
Commit
602c59aa
authored
3 years ago
by
François Clément
Browse files
Options
Downloads
Patches
Plain Diff
Proofs of measurable_Rbar_topo_basis_gt and measurable_Rbar_topo_basis_lt.
parent
150d5ecd
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Lebesgue/measurable_Rbar.v
+51
-5
51 additions, 5 deletions
Lebesgue/measurable_Rbar.v
with
51 additions
and
5 deletions
Lebesgue/measurable_Rbar.v
+
51
−
5
View file @
602c59aa
...
@@ -14,11 +14,12 @@ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
...
@@ -14,11 +14,12 @@ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING
file
for
more
details
.
COPYING
file
for
more
details
.
*
)
*
)
From
Coq
Require
Import
Qreals
Reals
Lra
.
From
Coq
Require
Import
Lia
Qreals
Reals
Lra
.
From
Coquelicot
Require
Import
Hierarchy
Rbar
.
From
Coquelicot
Require
Import
Hierarchy
Rbar
.
Require
Import
nat_compl
countable_sets
R_compl
Rbar_compl
UniformSpace_compl
.
Require
Import
nat_compl
countable_sets
.
Require
Import
Subset
Subset_dec
Subset_seq
Subset_R
Subset_Rbar
.
Require
Import
Rbar_compl
UniformSpace_compl
topo_bases_R
.
Require
Import
Subset
Subset_dec
Subset_seq
Subset_Rbar
.
Require
Import
Subset_system_base
Subset_system
.
Require
Import
Subset_system_base
Subset_system
.
Require
Import
measurable
measurable_R
.
Require
Import
measurable
measurable_R
.
...
@@ -337,7 +338,30 @@ Qed.
...
@@ -337,7 +338,30 @@ Qed.
Lemma
measurable_Rbar_topo_basis_gt
:
Lemma
measurable_Rbar_topo_basis_gt
:
forall
(
b
:
R
),
measurable
gen_Rbar_topo_basis
(
Rbar_gt
b
).
forall
(
b
:
R
),
measurable
gen_Rbar_topo_basis
(
Rbar_gt
b
).
Proof
.
Proof
.
Admitted
.
intros
b
;
apply
measurable_ext
with
(
union_seq
(
fun
n
=>
let
qn
:=
Q2R
(
bij_NQ
n
)
in
inter
(
Prop_cst
(
Rbar_gt
b
qn
))
(
Rbar_gt
qn
))).
(
*
*
)
intros
y
;
split
.
intros
[
n
[
Hn1
Hn2
]];
apply
Rbar_lt_trans
with
(
Q2R
(
bij_NQ
n
));
easy
.
intros
Hb
;
destruct
y
as
[
x
|
|
];
simpl
;
try
easy
.
destruct
(
Q_dense
_
_
Hb
)
as
[
q
Hq
].
exists
(
bij_QN
q
);
rewrite
bij_NQN
;
split
;
easy
.
destruct
(
Q_dense
(
b
-
1
)
b
)
as
[
q
[
_
Hq
]];
try
lra
.
exists
(
bij_QN
q
);
rewrite
bij_NQN
;
split
;
easy
.
(
*
*
)
apply
measurable_union_seq
;
intros
k
;
apply
measurable_inter
;
[
apply
measurable_Prop
|
apply
measurable_gen
].
pose
(
m
:=
(
2
*
k
+
1
)
%
nat
).
pose
(
n
:=
(
2
*
m
)
%
nat
).
rewrite
subset_ext
with
(
B
:=
topo_basis_Rbar
n
);
try
easy
.
unfold
topo_basis_Rbar
;
destruct
(
Even_Odd_dec
n
)
as
[
Hk1
|
Hk1
].
destruct
(
Even_Odd_dec
(
Nat
.
div2
n
))
as
[
Hk2
|
Hk2
];
unfold
n
,
m
in
*
;
rewrite
Nat
.
div2_double
in
*
.
destruct
(
Nat
.
Even_Odd_False
_
Hk2
);
exists
k
;
easy
.
replace
(
2
*
k
+
1
-
1
)
%
nat
with
(
2
*
k
)
%
nat
;
try
lia
.
rewrite
Nat
.
div2_double
;
easy
.
destruct
(
Nat
.
Even_Odd_False
n
);
try
easy
;
exists
m
;
easy
.
Qed
.
Lemma
measurable_Rbar_Borel_eq_gt
:
Lemma
measurable_Rbar_Borel_eq_gt
:
measurable_Rbar_Borel
=
measurable
gen_Rbar_gt
.
measurable_Rbar_Borel
=
measurable
gen_Rbar_gt
.
...
@@ -391,7 +415,29 @@ Qed.
...
@@ -391,7 +415,29 @@ Qed.
Lemma
measurable_Rbar_topo_basis_lt
:
Lemma
measurable_Rbar_topo_basis_lt
:
forall
(
a
:
R
),
measurable
gen_Rbar_topo_basis
(
Rbar_lt
a
).
forall
(
a
:
R
),
measurable
gen_Rbar_topo_basis
(
Rbar_lt
a
).
Proof
.
Proof
.
Admitted
.
intros
a
;
apply
measurable_ext
with
(
union_seq
(
fun
n
=>
let
qn
:=
Q2R
(
bij_NQ
n
)
in
inter
(
Prop_cst
(
Rbar_lt
a
qn
))
(
Rbar_lt
qn
))).
(
*
*
)
intros
y
;
split
.
intros
[
n
[
Hn1
Hn2
]];
apply
Rbar_lt_trans
with
(
Q2R
(
bij_NQ
n
));
easy
.
intros
Ha
;
destruct
y
as
[
x
|
|
];
simpl
;
try
easy
.
destruct
(
Q_dense
_
_
Ha
)
as
[
q
Hq
].
exists
(
bij_QN
q
);
rewrite
bij_NQN
;
split
;
easy
.
destruct
(
Q_dense
a
(
a
+
1
))
as
[
q
[
Hq
_
]];
try
lra
.
exists
(
bij_QN
q
);
rewrite
bij_NQN
;
split
;
try
easy
.
(
*
*
)
apply
measurable_union_seq
;
intros
k
;
apply
measurable_inter
;
[
apply
measurable_Prop
|
apply
measurable_gen
].
pose
(
m
:=
(
2
*
k
)
%
nat
).
pose
(
n
:=
(
2
*
m
)
%
nat
).
rewrite
subset_ext
with
(
B
:=
topo_basis_Rbar
n
);
try
easy
.
unfold
topo_basis_Rbar
;
destruct
(
Even_Odd_dec
n
)
as
[
Hk1
|
Hk1
].
destruct
(
Even_Odd_dec
(
Nat
.
div2
n
))
as
[
Hk2
|
Hk2
];
unfold
n
,
m
in
*
;
rewrite
Nat
.
div2_double
in
*
.
rewrite
Nat
.
div2_double
;
easy
.
destruct
(
Nat
.
Even_Odd_False
m
);
try
easy
;
exists
k
;
easy
.
destruct
(
Nat
.
Even_Odd_False
n
);
try
easy
;
exists
m
;
easy
.
Qed
.
Lemma
measurable_Rbar_Borel_eq_lt
:
Lemma
measurable_Rbar_Borel_eq_lt
:
measurable_Rbar_Borel
=
measurable
gen_Rbar_lt
.
measurable_Rbar_Borel
=
measurable
gen_Rbar_lt
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment