Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
Numerical Analysis in Coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Micaela Mayero
Numerical Analysis in Coq
Commits
71a124a4
Commit
71a124a4
authored
2 years ago
by
Mouhcine
Browse files
Options
Downloads
Patches
Plain Diff
The use of big_pred0_eq doesn't work.
parent
86090652
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
FEM/kronecker.v
+48
-40
48 additions, 40 deletions
FEM/kronecker.v
with
48 additions
and
40 deletions
FEM/kronecker.v
+
48
−
40
View file @
71a124a4
...
...
@@ -92,13 +92,58 @@ Section kronecker_bigop.
Context
{
E
:
ModuleSpace
R_Ring
}
.
Lemma
kronecker_bigop_l
:
forall
n
(
j
:
'
I_n
),
(
*
(
j
<
n
)
%
nat
->
*
)
\
big
[
plus
%
R
/
zero
]
_
(
i
<
n
)
(
kronecker
i
j
)
=
1.
Proof
.
(
*
old
try
*
)
(
*
intros
j
n
H1
.
replace
(
sum_pn
(
fun
i
:
nat
=>
kronecker
i
j
)
n
)
with
(
sum_pn
(
fun
i
:
nat
=>
mult
(
one
)
(
kronecker
i
j
))
n
).
apply
kronecker_sum_scal_in_l
;
easy
.
f_equal
;
apply
functional_extensionality
.
intros
i
;
rewrite
mult_one_l
;
easy
.
*
)
Admitted
.
Lemma
kronecker_bigop_r
:
forall
n
(
i
:
'
I_n
),
(
*
(
i
<
n
)
%
nat
->
*
)
\
big
[
plus
%
R
/
zero
]
_
(
j
<
n
)
(
kronecker
i
j
)
=
1.
Proof
.
(
*
intros
i
n
H1
.
replace
(
fun
j
:
nat
=>
kronecker
i
j
)
with
(
fun
j
:
nat
=>
kronecker
j
i
).
apply
kronecker_sum_l
;
easy
.
apply
functional_extensionality
.
intros
j
;
apply
kronecker_sym
.
*
)
(
*
old
try
*
)
(
*
intros
i
n
H1
.
replace
(
fun
j
:
nat
=>
kronecker
i
j
)
with
(
fun
j
:
nat
=>
kronecker
j
i
).
apply
kronecker_sum_l
;
easy
.
apply
functional_extensionality
.
intros
j
;
apply
kronecker_sym
.
Qed
.
*
)
Admitted
.
End
kronecker_bigop
.
Section
kronecker_bigop_scal
.
Context
{
E
:
ModuleSpace
R_Ring
}
.
Variable
I
:
Type
.
Variable
P
:
pred
I
.
Lemma
kronecker_bigop_scal_in_l
:
forall
n
(
j
:
'
I_n
)
(
a
:
'
E
^
n
),
(
*
(
j
<
n
)
%
nat
->
*
)
\
big
[
plus
/
zero
]
_
(
i
<
n
)
scal
(
kronecker
i
j
)
(
a
i
)
=
a
j
.
Proof
.
intros
n
j
a
.
induction
n
.
erewrite
<-
big_pred0_eq
.
erewrite
<-
big_pred0_eq
.
(
*
rewrite
bigop_plus_0
;
easy
.
(
*
*
)
...
...
@@ -195,44 +240,7 @@ apply functional_extensionality.
intros
j
;
f_equal
;
apply
kronecker_sym
.
*
)
Admitted
.
Lemma
kronecker_bigop_l
:
forall
n
(
j
:
'
I_n
),
(
*
(
j
<
n
)
%
nat
->
*
)
\
big
[
plus
%
R
/
zero
]
_
(
i
<
n
)
(
kronecker
i
j
)
=
1.
Proof
.
(
*
old
try
*
)
(
*
intros
j
n
H1
.
replace
(
sum_pn
(
fun
i
:
nat
=>
kronecker
i
j
)
n
)
with
(
sum_pn
(
fun
i
:
nat
=>
mult
(
one
)
(
kronecker
i
j
))
n
).
apply
kronecker_sum_scal_in_l
;
easy
.
f_equal
;
apply
functional_extensionality
.
intros
i
;
rewrite
mult_one_l
;
easy
.
*
)
Admitted
.
Lemma
kronecker_bigop_r
:
forall
n
(
i
:
'
I_n
),
(
*
(
i
<
n
)
%
nat
->
*
)
\
big
[
plus
%
R
/
zero
]
_
(
j
<
n
)
(
kronecker
i
j
)
=
1.
Proof
.
(
*
intros
i
n
H1
.
replace
(
fun
j
:
nat
=>
kronecker
i
j
)
with
(
fun
j
:
nat
=>
kronecker
j
i
).
apply
kronecker_sum_l
;
easy
.
apply
functional_extensionality
.
intros
j
;
apply
kronecker_sym
.
*
)
(
*
old
try
*
)
(
*
intros
i
n
H1
.
replace
(
fun
j
:
nat
=>
kronecker
i
j
)
with
(
fun
j
:
nat
=>
kronecker
j
i
).
apply
kronecker_sum_l
;
easy
.
apply
functional_extensionality
.
intros
j
;
apply
kronecker_sym
.
Qed
.
*
)
Admitted
.
Lemma
kronecker_bigop_prod
:
forall
n
(
i
j
:
'
I_n
),
Lemma
kronecker_bigop_scal
:
forall
n
(
i
j
:
'
I_n
),
(
i
<
n
)
%
nat
->
(
j
<
n
)
%
nat
->
\
big
[
plus
%
R
/
zero
]
_
(
k
<
n
)
scal
(
kronecker
i
k
)
(
kronecker
k
j
)
=
kronecker
i
j
.
Proof
.
...
...
@@ -250,4 +258,4 @@ admit.
Admitted
.
End
kronecker_bigop
.
\ No newline at end of file
End
kronecker_bigop_scal
.
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment