Skip to content
Snippets Groups Projects
Commit 71a124a4 authored by Mouhcine's avatar Mouhcine
Browse files

The use of big_pred0_eq doesn't work.

parent 86090652
No related branches found
No related tags found
No related merge requests found
......@@ -92,13 +92,58 @@ Section kronecker_bigop.
Context {E : ModuleSpace R_Ring}.
Lemma kronecker_bigop_l : forall n (j : 'I_n),
(*(j < n)%nat -> *)
\big[plus%R/zero]_(i < n) (kronecker i j) = 1.
Proof.
(* old try *)
(*
intros j n H1.
replace (sum_pn (fun i : nat => kronecker i j) n) with
(sum_pn (fun i : nat => mult (one) (kronecker i j)) n).
apply kronecker_sum_scal_in_l; easy.
f_equal; apply functional_extensionality.
intros i; rewrite mult_one_l; easy.
*)
Admitted.
Lemma kronecker_bigop_r : forall n (i : 'I_n),
(*(i < n)%nat -> *)
\big[plus%R/zero]_(j < n) (kronecker i j) = 1.
Proof.
(*intros i n H1.
replace (fun j : nat => kronecker i j) with
(fun j : nat => kronecker j i).
apply kronecker_sum_l; easy.
apply functional_extensionality.
intros j; apply kronecker_sym.*)
(* old try *)
(*
intros i n H1.
replace (fun j : nat => kronecker i j) with
(fun j : nat => kronecker j i).
apply kronecker_sum_l; easy.
apply functional_extensionality.
intros j; apply kronecker_sym.
Qed.*)
Admitted.
End kronecker_bigop.
Section kronecker_bigop_scal.
Context {E : ModuleSpace R_Ring}.
Variable I : Type.
Variable P : pred I.
Lemma kronecker_bigop_scal_in_l : forall n (j : 'I_n) (a : 'E^n),
(* (j < n)%nat -> *)
\big[plus/zero]_(i < n) scal (kronecker i j) (a i) = a j.
Proof.
intros n j a.
induction n.
erewrite <- big_pred0_eq.
erewrite <- big_pred0_eq.
(*
rewrite bigop_plus_0; easy.
(* *)
......@@ -195,44 +240,7 @@ apply functional_extensionality.
intros j; f_equal; apply kronecker_sym.*)
Admitted.
Lemma kronecker_bigop_l : forall n (j : 'I_n),
(*(j < n)%nat -> *)
\big[plus%R/zero]_(i < n) (kronecker i j) = 1.
Proof.
(* old try *)
(*
intros j n H1.
replace (sum_pn (fun i : nat => kronecker i j) n) with
(sum_pn (fun i : nat => mult (one) (kronecker i j)) n).
apply kronecker_sum_scal_in_l; easy.
f_equal; apply functional_extensionality.
intros i; rewrite mult_one_l; easy.
*)
Admitted.
Lemma kronecker_bigop_r : forall n (i : 'I_n),
(*(i < n)%nat -> *)
\big[plus%R/zero]_(j < n) (kronecker i j) = 1.
Proof.
(*intros i n H1.
replace (fun j : nat => kronecker i j) with
(fun j : nat => kronecker j i).
apply kronecker_sum_l; easy.
apply functional_extensionality.
intros j; apply kronecker_sym.*)
(* old try *)
(*
intros i n H1.
replace (fun j : nat => kronecker i j) with
(fun j : nat => kronecker j i).
apply kronecker_sum_l; easy.
apply functional_extensionality.
intros j; apply kronecker_sym.
Qed.*)
Admitted.
Lemma kronecker_bigop_prod : forall n (i j : 'I_n),
Lemma kronecker_bigop_scal : forall n (i j : 'I_n),
(i < n)%nat -> (j < n)%nat ->
\big[plus%R/zero]_(k < n) scal (kronecker i k) (kronecker k j) = kronecker i j.
Proof.
......@@ -250,4 +258,4 @@ admit.
Admitted.
End kronecker_bigop.
\ No newline at end of file
End kronecker_bigop_scal.
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment