Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
Numerical Analysis in Coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Micaela Mayero
Numerical Analysis in Coq
Commits
8454adcd
Commit
8454adcd
authored
2 years ago
by
Mouhcine
Browse files
Options
Downloads
Patches
Plain Diff
State all results for the module space E (ie with scal and not mult)
parent
3fce42cf
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
FEM/kronecker.v
+53
-98
53 additions, 98 deletions
FEM/kronecker.v
with
53 additions
and
98 deletions
FEM/kronecker.v
+
53
−
98
View file @
8454adcd
...
...
@@ -11,8 +11,14 @@ From mathcomp Require Import seq path.
Add
LoadPath
"../LM"
as
LM
.
Add
LoadPath
"../Lebesgue"
as
Lebesgue
.
Require
Import
sum_pn
bigop_compl
.
Notation
"''' E ^ n"
:=
(
'
I_n
->
E
)
(
at
level
8
,
E
at
level
2
,
n
at
level
2
,
format
"''' E ^ n"
).
Section
kronecker
.
(
*
on
peut
le
d
é
finir
dans
un
anneau
g
é
n
é
rique
K
*
)
...
...
@@ -82,18 +88,25 @@ Qed.
End
kronecker
.
Section
kronecker_
sum_pn
.
Section
kronecker_
bigop
.
Context
{
E
:
ModuleSpace
R_Ring
}
.
Lemma
kronecker_sum_scal_in_l
:
forall
j
n
(
a
:
nat
->
E
),
(
j
<
n
)
%
nat
->
sum_pn
(
fun
i
=>
scal
(
kronecker
i
j
)
(
a
i
))
n
=
a
j
.
Lemma
kronecker_bigop_scal_in_l
:
forall
n
(
j
:
'
I_n
)
(
a
:
'
E
^
n
),
(
*
(
j
<
n
)
%
nat
->
*
)
\
big
[
plus
/
zero
]
_
(
i
<
n
)
scal
(
kronecker
i
j
)
(
a
i
)
=
a
j
.
Proof
.
Admitted
.
intros
n
j
a
.
induction
n
.
erewrite
<-
big_pred0_eq
.
(
*
rewrite
bigop_plus_0
;
easy
.
(
*
*
)
rewrite
bigop_plus_Sn
.
case
(
lt_dec
j
n
);
intros
Hn
.
*
)
Lemma
kronecker_sum_mult_in_l
:
forall
j
n
a
,
(
j
<
n
)
%
nat
->
sum_pn
(
fun
i
=>
mult
(
a
i
)
(
kronecker
i
j
))
n
=
a
j
.
Proof
.
(
*
old
try
*
)
intros
j
n
a
H
.
induction
n
;
try
easy
.
(
*
*
)
...
...
@@ -124,17 +137,11 @@ case (eq_nat_dec i j); try lia.
intro
;
erewrite
Rmult_0_r
;
easy
.
Admitted
.
(
*
Lemma
kronecker_sum_scal_in_l
:
forall
j
n
a
,
(
j
<
n
)
%
nat
->
sum_pn
(
fun
i
=>
mult
(
a
i
)
(
kronecker
i
j
))
n
=
a
j
.
Proof
.
Admitted
.
Lemma
kronecker_sum_scal_out_l
:
forall
j
n
a
,
Lemma
kronecker_bigop_scal_out_l
:
forall
n
j
(
a
:
'
E
^
n
),
~
(
j
<
n
)
%
nat
->
sum_pn
(
fun
i
=>
mult
(
a
i
)
(
kronecker
i
j
)
)
n
=
zero
.
\
big
[
plus
%
R
/
zero
]
_
(
i
<
n
)
scal
(
kronecker
i
j
)
(
a
i
)
=
zero
.
Proof
.
(
*
old
try
*
)
intros
j
n
a
H1
.
induction
n
;
try
easy
.
rewrite
sum_pn_Sn
.
...
...
@@ -157,10 +164,11 @@ intro; rewrite Rmult_0_r; easy.
Qed
.
*
)
Admitted
.
Lemma
kronecker_
sum
_scal_in_r
:
forall
i
n
a
,
(
i
<
n
)
%
nat
->
sum_pn
(
fun
j
=>
mult
(
a
j
)
(
kronecker
i
j
)
)
n
=
a
i
.
Lemma
kronecker_
bigop
_scal_in_r
:
forall
n
(
i
:
'
I_n
)
(
a
:
'
E
^
n
)
,
(
*
(
i
<
n
)
%
nat
->
*
)
\
big
[
plus
/
zero
]
_
(
j
<
n
)
scal
(
kronecker
i
j
)
(
a
j
)
=
a
i
.
Proof
.
(
*
old
try
*
)
intros
i
n
a
H
.
replace
(
fun
j
:
nat
=>
mult
(
a
j
)
(
kronecker
i
j
))
with
(
fun
j
:
nat
=>
mult
(
a
j
)
(
kronecker
j
i
)).
...
...
@@ -169,9 +177,12 @@ apply functional_extensionality.
intros
j
;
f_equal
;
apply
kronecker_sym
.
Qed
.
Lemma
kronecker_sum_scal_out_r
:
forall
i
n
a
,
~
(
i
<
n
)
%
nat
->
sum_pn
(
fun
j
=>
mult
(
a
j
)
(
kronecker
i
j
))
n
=
0.
Lemma
kronecker_bigop_scal_out_r
:
forall
i
n
(
a
:
'
E
^
n
),
~
(
i
<
n
)
%
nat
->
\
big
[
plus
%
R
/
zero
]
_
(
j
<
n
)
scal
(
kronecker
i
j
)
(
a
j
)
=
zero
.
Proof
.
(
*
old
try
*
)
intros
i
n
a
H1
.
replace
(
fun
j
:
nat
=>
mult
(
a
j
)
(
kronecker
i
j
))
with
(
fun
j
:
nat
=>
mult
(
a
j
)
(
kronecker
j
i
)).
...
...
@@ -180,90 +191,23 @@ apply functional_extensionality.
intros
j
;
f_equal
;
apply
kronecker_sym
.
Qed
.
Lemma
kronecker_sum_l
:
forall
j
n
,
(
j
<
n
)
%
nat
->
sum_pn
(
fun
i
=>
kronecker
i
j
)
n
=
1.
Lemma
kronecker_bigop_l
:
forall
n
(
j
:
'
I_n
),
(
*
(
j
<
n
)
%
nat
->
*
)
\
big
[
plus
%
R
/
zero
]
_
(
i
<
n
)
(
kronecker
i
j
)
=
1.
Proof
.
(
*
old
try
*
)
intros
j
n
H1
.
replace
(
sum_pn
(
fun
i
:
nat
=>
kronecker
i
j
)
n
)
with
(
sum_pn
(
fun
i
:
nat
=>
mult
(
one
)
(
kronecker
i
j
))
n
).
apply
kronecker_sum_scal_in_l
;
easy
.
f_equal
;
apply
functional_extensionality
.
intros
i
;
rewrite
mult_one_l
;
easy
.
Qed
.
Lemma
kronecker_sum_r
:
forall
i
n
,
(
i
<
n
)
%
nat
->
sum_pn
(
fun
j
=>
kronecker
i
j
)
n
=
1.
Proof
.
intros
i
n
H1
.
replace
(
fun
j
:
nat
=>
kronecker
i
j
)
with
(
fun
j
:
nat
=>
kronecker
j
i
).
apply
kronecker_sum_l
;
easy
.
apply
functional_extensionality
.
intros
j
;
apply
kronecker_sym
.
Qed
.
Lemma
kronecker_sum_prod
:
forall
i
j
n
,
(
i
<
n
)
%
nat
->
(
j
<
n
)
%
nat
->
sum_pn
(
fun
k
=>
mult
(
kronecker
i
k
)
(
kronecker
k
j
))
n
=
kronecker
i
j
.
Proof
.
intros
i
j
n
H1
H2
.
induction
n
;
try
easy
.
rewrite
sum_pn_Sn
.
destruct
(
lt_dec
i
n
)
as
[
Hi
|
Hi
],
(
lt_dec
j
n
)
as
[
Hj
|
Hj
].
rewrite
IHn
;
try
easy
.
replace
(
mult
_
_
)
with
(
@
zero
R_Ring
).
apply
plus_zero_r
.
rewrite
kronecker_is_0
;
try
lia
.
(
*
rewrite
mult_zero_l
.
*
)
admit
.
Admitted
.
*
)
End
kronecker_sum_pn
.
Section
kronecker_bigop
.
Context
{
E
:
ModuleSpace
R_Ring
}
.
(
*
TODO
:
state
all
results
for
the
module
space
E
(
ie
with
scal
and
not
mult
).
*
)
Lemma
kronecker_bigop_scal_in_l
:
forall
n
(
j
:
'
I_n
)
(
a
:
'
I_n
->
E
),
\
big
[
plus
/
zero
]
_
(
i
<
n
)
scal
(
kronecker
i
j
)
(
a
i
)
=
a
j
.
Proof
.
intros
n
j
a
.
induction
n
.
(
*
rewrite
bigop_plus_0
;
easy
.
(
*
*
)
rewrite
bigop_plus_Sn
.
case
(
lt_dec
j
n
);
intros
Hn
.
*
)
Admitted
.
Lemma
kronecker_bigop_scal_out_l
:
forall
n
j
a
,
~
(
j
<
n
)
%
nat
->
\
big
[
plus
%
R
/
0
]
_
(
i
<
n
)
scal
(
a
i
)
(
kronecker
i
j
)
=
zero
.
Proof
.
Admitted
.
Lemma
kronecker_bigop_scal_in_r
:
forall
n
(
i
:
'
I_n
)
(
a
:
'
I_n
->
E
),
\
big
[
plus
/
zero
]
_
(
j
<
n
)
scal
(
kronecker
i
j
)
(
a
j
)
=
a
i
.
Proof
.
Admitted
.
Lemma
kronecker_bigop_scal_out_r
:
forall
i
n
a
,
~
(
i
<
n
)
%
nat
->
\
big
[
plus
%
R
/
0
]
_
(
j
<
n
)
mult
(
a
j
)
(
kronecker
i
j
)
=
0.
Proof
.
Admitted
.
Lemma
kronecker_bigop_l
:
forall
n
(
j
:
'
I_n
),
\
big
[
plus
%
R
/
0
]
_
(
i
<
n
)
(
kronecker
i
j
)
=
1.
Proof
.
Admitted
.
Lemma
kronecker_bigop_r
:
forall
n
(
i
:
'
I_n
),
\
big
[
plus
%
R
/
0
]
_
(
j
<
n
)
(
kronecker
i
j
)
=
1.
(
*
(
i
<
n
)
%
nat
->
*
)
\
big
[
plus
%
R
/
zero
]
_
(
j
<
n
)
(
kronecker
i
j
)
=
1.
Proof
.
(
*
intros
i
n
H1
.
replace
(
fun
j
:
nat
=>
kronecker
i
j
)
with
...
...
@@ -271,22 +215,33 @@ replace (fun j : nat => kronecker i j) with
apply
kronecker_sum_l
;
easy
.
apply
functional_extensionality
.
intros
j
;
apply
kronecker_sym
.
*
)
(
*
old
try
*
)
intros
i
n
H1
.
replace
(
fun
j
:
nat
=>
kronecker
i
j
)
with
(
fun
j
:
nat
=>
kronecker
j
i
).
apply
kronecker_sum_l
;
easy
.
apply
functional_extensionality
.
intros
j
;
apply
kronecker_sym
.
Qed
.
Admitted
.
Lemma
kronecker_bigop_prod
:
forall
i
j
n
,
Lemma
kronecker_bigop_prod
:
forall
n
(
i
j
:
'
I_n
)
,
(
i
<
n
)
%
nat
->
(
j
<
n
)
%
nat
->
sum_pn
(
fun
k
=>
mult
(
kronecker
i
k
)
(
kronecker
k
j
)
)
n
=
kronecker
i
j
.
\
big
[
plus
%
R
/
zero
]
_
(
k
<
n
)
scal
(
kronecker
i
k
)
(
kronecker
k
j
)
=
kronecker
i
j
.
Proof
.
intros
i
j
n
H1
H2
.
induction
n
;
try
easy
.
rewrite
sum_pn_Sn
.
(
*
rewrite
sum_pn_Sn
.
destruct
(
lt_dec
i
n
)
as
[
Hi
|
Hi
],
(
lt_dec
j
n
)
as
[
Hj
|
Hj
].
rewrite
IHn
;
try
easy
.
replace
(
mult
_
_
)
with
(
@
zero
R_Ring
).
apply
plus_zero_r
.
rewrite
kronecker_is_0
;
try
lia
.
rewrite
kronecker_is_0
;
try
lia
.
*
)
(
*
rewrite
mult_zero_l
.
*
)
admit
.
Admitted
.
End
kronecker_bigop
.
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment