Skip to content
Snippets Groups Projects
Commit 8491ab46 authored by François Clément's avatar François Clément
Browse files

WIP: "seq" results about Trace.

parent 75e91e46
No related branches found
No related tags found
No related merge requests found
......@@ -379,14 +379,43 @@ Qed.
Lemma Trace_Inter_monot_seq : Inter_monot_seq P -> Inter_monot_seq (Trace P V).
Proof.
intros HP A HA1 HA2.
assert (HA3 : forall n, exists B, P B /\ A n = trace V B).
intros n; induction (HA2 n) as [B HB]; exists B; easy.
destruct (choice _ HA3) as [B HB1].
assert (HB2 : decr_seq B).
intros n. admit.
replace (inter_seq A) with (inter_seq (tracem_seq V B)).
rewrite <- trace_inter_seq; apply Tr, HP; try apply HB1; easy.
apply inter_seq_ext; intros n; symmetry; apply HB1.
Admitted.
Lemma Trace_Union_monot_seq : Union_monot_seq P -> Union_monot_seq (Trace P V).
Proof.
intros HP A HA1 HA2.
assert (HA3 : forall n, exists B, P B /\ A n = trace V B).
intros n; induction (HA2 n) as [B HB]; exists B; easy.
destruct (choice _ HA3) as [B HB1].
assert (HB2 : incr_seq B).
intros n. admit.
replace (union_seq A) with (union_seq (tracem_seq V B)).
rewrite <- trace_union_seq; apply Tr, HP; try apply HB1; easy.
apply union_seq_ext; intros n; symmetry; apply HB1.
Admitted.
Lemma Trace_Union_disj_seq : Union_disj_seq P -> Union_disj_seq (Trace P V).
Proof.
intros HP A HA1 HA2.
assert (HA3 : forall n, exists B, P B /\ A n = trace V B).
intros n; induction (HA2 n) as [B HB]; exists B; easy.
destruct (choice _ HA3) as [B HB1].
assert (HB2 : disj_seq B).
intros n1 n2 Hn.
admit.
replace (union_seq A) with (union_seq (tracem_seq V B)).
rewrite <- trace_union_seq; apply Tr, HP; try apply HB1; easy.
apply union_seq_ext; intros n; symmetry; apply HB1.
Admitted.
End Seq_Facts3.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment