Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
Numerical Analysis in Coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Micaela Mayero
Numerical Analysis in Coq
Commits
88fe0dab
Commit
88fe0dab
authored
3 years ago
by
Mouhcine
Browse files
Options
Downloads
Patches
Plain Diff
some edits
parent
3aaba82f
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
FEM/quadrature.v
+18
-14
18 additions, 14 deletions
FEM/quadrature.v
with
18 additions
and
14 deletions
FEM/quadrature.v
+
18
−
14
View file @
88fe0dab
...
...
@@ -32,8 +32,8 @@ Variable d : nat. (* d = dimension de l'espace de départ E C R^d *)
Variable
P
:
(
E
->
R
)
->
Prop
.
(
*
ss
ens
de
l
'
ensemble
de
fcts
E
->
R
*
)
Variable
Nk
:
nat
.
(
*
Nk
=
dimension
de
l
'
espace
de
polyn
ô
me
Pk
(
T
)
de
triangle
*
)
Variable
vert
:
nat
->
E
.
(
*
vertices
=
les
sommets
de
l
'é
lt
g
é
om
=
suite
*
)
Variable
Nb_vert
:
nat
.
(
*
le
nombre
de
sommets
dans
tout
E
*
)
Hypothesis
H_vert
:
(
d
<
Nb_vert
)
%
nat
.
(
*
dim
E
<
Nb
of
vertices
*
)
Variable
Card_sigma
:
nat
.
(
*
Nb_vert
*
)
(
*
le
nombre
de
sommets
dans
tout
E
*
)
Hypothesis
H
yp
_vert
:
(
d
<
Card_sigma
)
%
nat
.
(
*
dim
E
<
cardinal
of
Sigma
*
)
(
*
mod
é
liser
l
'
ev
des
fonctions
à
valeurs
dans
un
ev
pour
abstraire
(
pour
le
rendre
g
é
n
é
ral
)
l
'
espace
des
polynomes
??
*
)
...
...
@@ -45,41 +45,45 @@ Check (Pol (fun _ => 0)).
Check
(
dim
Pol
).
(
*
fin
essai
*
)
Definition
geom
:
E
->
Prop
:=
fun
x
=>
exists
a
:
nat
->
R
,
(
x
=
sum_n
(
fun
i
=>
scal
(
a
i
)
(
vert
i
))
Nb_vert
)
/
\
(
forall
i
,
(
i
<
Nb_vert
)
%
nat
->
0
<=
a
i
<=
1
).
(
x
=
sum_n
(
fun
i
=>
scal
(
a
i
)
(
vert
i
))
Card_sigma
)
/
\
(
forall
i
,
(
i
<
Card_sigma
)
%
nat
->
0
<=
a
i
<=
1
).
(
*
hypoth
è
ses
sur
vert
:
forme
g
é
ometrique
non
d
é
g
é
ner
é
e
*
)
Variable
sigma
:
nat
->
(
E
->
R
)
->
R
.
(
*
apr
è
s
definir
P
:
nat
->
P
->
R
*
)
Hypothesis
H_sigma_1
:
forall
i
,
(
i
<
Nb_vert
)
%
nat
->
is_linear_mapping
(
sigma
i
).
Hypothesis
H_sigma_1
:
forall
i
,
(
i
<
Card_sigma
)
%
nat
->
is_linear_mapping
(
sigma
i
).
Definition
sigma_hyp
:=
fun
p
=>
(
*
hyp
que
p
est
poly
de
deg
<=
k
*
)
(
forall
i
,
(
i
<
Nb_vert
)
%
nat
->
sigma
i
p
=
0
)
->
forall
x
,
p
x
=
0.
(
forall
i
,
(
i
<
Card_sigma
)
%
nat
->
sigma
i
p
=
0
)
->
forall
x
,
p
x
=
0.
(
*
p
sera
le
polyn
ô
me
nul
+
faut
des
hypth
è
ses
sur
les
polyn
ô
mes
*
)
(
*
lemme
:
Sigma
={
sigma
(
i
)
pour
i
<
Nk
}
est
une
bijection
entre
Pk
et
R
^
Nk
->
cons
é
quence
de
H_sigma_2
*
)
(
*
lemme
:
Sigma
={
sigma
(
i
)
pour
i
<
Card_sigma
}
est
une
bijection
entre
Pk
et
R
^
Card_sigma
->
cons
é
quence
de
H_sigma_2
*
)
(
*
next
step
:
poly
de
ssreflect
mathcomp
analysis
et
en
dim
qcq
?*
)
Hypothesis
H_sigma_2
:
forall
p
(
*
hyp
que
p
est
poly
de
deg
<=
k
*
),
(
forall
i
,
(
i
<
Nb_vert
)
%
nat
->
sigma
i
p
=
0
)
->
forall
x
,
p
x
=
0.
(
forall
i
,
(
i
<
Card_sigma
)
%
nat
->
sigma
i
p
=
0
)
->
forall
x
,
p
x
=
0.
Definition
is_unisolvant
:
Prop
:=
(
*
forall
f
:
P
,
*
)
forall
a
:
nat
->
R
,
exists
!
f
,
Pol
f
/
\
(
forall
i
,
(
i
<
Nb_vert
)
%
nat
->
sigma
i
f
=
a
i
).
forall
a
:
nat
->
R
,
exists
!
f
,
Pol
f
/
\
(
forall
i
,
(
i
<
Card_sigma
)
%
nat
->
sigma
i
f
=
a
i
).
Lemma
is_unisolvant_equiv
:
is_unisolvant
<->
(
Nk
=
Nb_vert
)
/
\
(
exists
p
,(
forall
i
,
(
i
<
Nb_vert
)
%
nat
->
sigma
i
p
=
0
)
->
forall
x
,
p
x
=
0
).
(
Nk
=
Card_sigma
)
/
\
(
exists
p
,(
forall
i
,
(
i
<
Card_sigma
)
%
nat
->
sigma
i
p
=
0
)
->
forall
x
,
p
x
=
0
).
Proof
.
split
;
intros
H1
.
unfold
is_unisolvant
in
H1
.
split
.
Admitted
.
(
**
\
poly_
(
i
<
n
)
E
i
is
the
polynomial
:
(
E
0
)
+
(
E
1
)
*:
'
X
+
...
+
E
(
n
-
1
)
*:
'
X
^
(
n
-
1
)
*
)
(
*
Variable
Pk
:
E
->
R
!!
*
)
Let
Pk
:
{
poly
R
}:=
\
poly_
(
i
<
S
k
)
i
%:
R
.
(
*
Variable
Pk
:
E
->
R
!!
Let
Pk
:
{
poly
R
}:=
\
poly_
(
i
<
S
k
)
i
%:
R
.
*
)
End
Finite_EM
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment