Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
Numerical Analysis in Coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Micaela Mayero
Numerical Analysis in Coq
Commits
b0a05d81
Commit
b0a05d81
authored
3 years ago
by
François Clément
Browse files
Options
Downloads
Patches
Plain Diff
Proofs of image_diff, image_compl and preimage_empty_equiv.
parent
cd311819
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Lebesgue/Subset.v
+16
-21
16 additions, 21 deletions
Lebesgue/Subset.v
with
16 additions
and
21 deletions
Lebesgue/Subset.v
+
16
−
21
View file @
b0a05d81
...
...
@@ -1825,17 +1825,6 @@ intros A1 B1 H1 x2 [x1 Hx1].
exists
x1
;
split
;
try
easy
;
apply
H1
;
easy
.
Qed
.
Lemma
image_compl
:
forall
A1
,
incl
(
compl
(
image
f
A1
))
(
image
f
(
compl
A1
)).
Proof
.
subset_unfold
;
intros
A1
x2
Hx2
.
(
*
apply
not_ex_all_not
in
Hx2
.
*
)
Admitted
.
Lemma
image_union
:
forall
A1
B1
,
image
f
(
union
A1
B1
)
=
union
(
image
f
A1
)
(
image
f
B1
).
Proof
.
...
...
@@ -1854,16 +1843,19 @@ Qed.
Lemma
image_diff
:
forall
A1
B1
,
incl
(
diff
(
image
f
A1
)
(
image
f
B1
))
(
image
f
(
diff
A1
B1
)).
Proof
.
intros
;
unfold
diff
.
apply
incl_trans
with
(
inter
(
image
f
A1
)
(
image
f
(
compl
B1
)))
.
apply
inter_monot_l
,
image_compl
.
(
*
apply
image_inter
.
*
)
intros
A1
B1
x2
[[
x1
Hx1
]
Hx2
'
]
.
unfold
compl
,
image
in
Hx2
'
.
(
*
apply
not_ex_all_not
in
Hx2
.
does
not
work
!
*
)
assert
(
Hx2
:
forall
x1
,
~
B1
x1
\
/
x2
<>
f
x1
).
intros
y1
;
apply
not_and_or
;
generalize
y1
;
apply
not_ex_all_not
;
easy
.
clear
Hx2
'
.
exists
x1
;
repeat
split
;
try
easy
;
destruct
(
Hx2
x1
);
easy
.
Qed
.
Admitted
.
Lemma
image_compl
:
forall
A1
,
incl
(
diff
(
image
f
fullset
)
(
image
f
A1
))
(
image
f
(
compl
A1
)).
Proof
.
intros
;
rewrite
compl_equiv_def_diff
;
apply
image_diff
.
Qed
.
Lemma
image_sym_diff
:
forall
A1
B1
,
...
...
@@ -1887,7 +1879,10 @@ Variable f : U1 -> U2. (* Function. *)
Lemma
preimage_empty_equiv
:
forall
A2
,
empty
(
preimage
f
A2
)
<->
disj
A2
(
image
f
fullset
).
Proof
.
Admitted
.
intros
A2
;
split
.
intros
HA2
x2
Hx2
[
x1
[
_
Hx1
]];
apply
(
HA2
x1
);
rewrite
Hx1
in
Hx2
;
easy
.
intros
HA2
x1
Hx1
;
apply
(
HA2
(
f
x1
));
try
easy
;
exists
x1
;
easy
.
Qed
.
Lemma
preimage_emptyset
:
preimage
f
emptyset
=
emptyset
.
Proof
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment