Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
Numerical Analysis in Coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Micaela Mayero
Numerical Analysis in Coq
Commits
b89f2ab8
Commit
b89f2ab8
authored
3 years ago
by
Sylvie Boldo
Browse files
Options
Downloads
Patches
Plain Diff
First try: vector space of finite dimension as a subspace
parent
d649cd43
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
FEM/Finite_dim.v
+71
-0
71 additions, 0 deletions
FEM/Finite_dim.v
FEM/quadrature.v
+10
-2
10 additions, 2 deletions
FEM/quadrature.v
with
81 additions
and
2 deletions
FEM/Finite_dim.v
0 → 100644
+
71
−
0
View file @
b89f2ab8
From
Coquelicot
Require
Import
Coquelicot
.
Add
LoadPath
"../LM"
as
LM
.
From
LM
Require
Import
check_sub_structure
.
Section
FD
.
Context
{
E
:
ModuleSpace
R_AbsRing
}
.
Record
FiniteDim
:=
FD
{
dim
:
nat
;
B
:
nat
->
E
;
BO
:
B
0
=
zero
;
(
*
for
an
easier
handling
of
dim
=
0
*
)
phi
:>
E
->
Prop
:=
fun
u
=>
exists
L
:
nat
->
R
,
u
=
sum_n
(
fun
n
=>
scal
(
L
n
)
(
B
n
))
dim
;
}
.
(
*
Base
orthonorm
é
e
...
Context
{
E
:
Hilbert
}
.
Record
FiniteDim
:=
FD
{
dim
:
nat
;
B
:
nat
->
E
;
BO
:
B
0
=
zero
;
(
*
for
an
easier
handling
of
dim
=
0
*
)
HB1
:
forall
(
i
:
nat
),
(
0
<
i
)
%
nat
->
Hnorm
(
B
i
)
=
1
;
HB2
:
forall
i
j
,
(
0
<
i
<
j
)
%
nat
->
(
inner
(
B
i
)
(
B
j
))
=
0
;
phi
:>
E
->
Prop
:=
fun
u
=>
exists
L
:
nat
->
R
,
u
=
sum_n
(
fun
n
=>
scal
(
L
n
)
(
B
n
))
dim
;
}
.
*
)
Lemma
toto
:
forall
P
:
FiniteDim
,
compatible_m
P
.
Proof
.
intros
P
;
destruct
P
;
simpl
.
unfold
phi
;
simpl
.
split
.
split
.
intros
x
y
(
Lx
,
HLx
)
(
Ly
,
HLy
).
exists
(
fun
n
=>
minus
(
Lx
n
)
(
Ly
n
)).
rewrite
HLx
,
HLy
.
rewrite
<-
scal_opp_one
.
rewrite
<-
sum_n_scal_l
,
<-
sum_n_plus
.
apply
sum_n_ext
;
intros
n
.
rewrite
scal_opp_one
.
rewrite
(
scal_minus_distr_r
(
Lx
n
));
easy
.
exists
zero
.
exists
(
fun
_
=>
zero
).
apply
sym_eq
;
clear
.
induction
dim0
.
unfold
sum_n
,
sum_n_m
,
Iter
.
iter_nat
;
simpl
.
rewrite
plus_zero_r
.
apply
(
scal_zero_l
(
B0
0
%
nat
)).
rewrite
sum_Sn
.
rewrite
IHdim0
,
plus_zero_l
.
apply
(
scal_zero_l
(
B0
(
S
dim0
))).
intros
x
l
(
Lx
,
HLx
).
exists
(
fun
n
=>
scal
l
(
Lx
n
)).
rewrite
HLx
.
rewrite
<-
sum_n_scal_l
.
apply
sum_n_ext
;
intros
n
.
rewrite
scal_assoc
;
easy
.
Qed
.
(
*
Check
(
forall
P
:
FiniteDim
,
Sg_ModuleSpace
(
toto
P
)).
*
)
End
FD
.
\ No newline at end of file
This diff is collapsed.
Click to expand it.
FEM/quadrature.v
+
10
−
2
View file @
b89f2ab8
...
...
@@ -37,6 +37,14 @@ Hypothesis H_vert : (d < Nb_vert)%nat. (* dim E < Nb of vertices*)
(
*
mod
é
liser
l
'
ev
des
fonctions
à
valeurs
dans
un
ev
pour
abstraire
(
pour
le
rendre
g
é
n
é
ral
)
l
'
espace
des
polynomes
??
*
)
(
*
essai
EVN
*
)
Require
Import
Finite_dim
.
Variable
Pol
:
(
@
FiniteDim
(
@
fct_ModuleSpace
E
R_ModuleSpace
)).
Check
(
Pol
(
fun
_
=>
0
)).
Check
(
dim
Pol
).
(
*
fin
essai
*
)
Definition
geom
:
E
->
Prop
:=
fun
x
=>
exists
a
:
nat
->
R
,
...
...
@@ -58,8 +66,8 @@ Definition sigma_hyp :=
Hypothesis
H_sigma_2
:
forall
p
(
*
hyp
que
p
est
poly
de
deg
<=
k
*
),
(
forall
i
,
(
i
<
Nb_vert
)
%
nat
->
sigma
i
p
=
0
)
->
forall
x
,
p
x
=
0.
Definition
is_unisolvant
:
Prop
:=
(
*
f
:
P
*
)
forall
a
:
nat
->
R
,
exists
!
f
,
P
f
/
\
(
forall
i
,
(
i
<
Nb_vert
)
%
nat
->
sigma
i
f
=
a
i
).
Definition
is_unisolvant
:
Prop
:=
(
*
forall
f
:
P
,
*
)
forall
a
:
nat
->
R
,
exists
!
f
,
P
ol
f
/
\
(
forall
i
,
(
i
<
Nb_vert
)
%
nat
->
sigma
i
f
=
a
i
).
Lemma
is_unisolvant_equiv
:
is_unisolvant
<->
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment