Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
Numerical Analysis in Coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Micaela Mayero
Numerical Analysis in Coq
Commits
c1b3fa48
Commit
c1b3fa48
authored
2 years ago
by
Mouhcine
Browse files
Options
Downloads
Patches
Plain Diff
kronecker.v now compiles
parent
fa0c1905
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
FEM/kronecker.v
+14
-8
14 additions, 8 deletions
FEM/kronecker.v
with
14 additions
and
8 deletions
FEM/kronecker.v
+
14
−
8
View file @
c1b3fa48
...
...
@@ -107,6 +107,7 @@ case (lt_dec j n); intros Hn.*)
(
*
old
try
*
)
(
*
intros
j
n
a
H
.
induction
n
;
try
easy
.
(
*
*
)
...
...
@@ -134,7 +135,7 @@ erewrite Rmult_1_r; easy.
rewrite
sum_pn_zero
;
try
easy
.
intros
i
Hi
;
unfold
kronecker
.
case
(
eq_nat_dec
i
j
);
try
lia
.
intro
;
erewrite
Rmult_0_r
;
easy
.
intro
;
erewrite
Rmult_0_r
;
easy
.
*
)
Admitted
.
Lemma
kronecker_bigop_scal_out_l
:
forall
n
j
(
a
:
'
E
^
n
),
...
...
@@ -144,6 +145,7 @@ Proof.
(
*
old
try
*
)
intros
j
n
a
H1
.
induction
n
;
try
easy
.
(
*
rewrite
sum_pn_Sn
.
case
(
lt_dec
j
n
);
intros
Hn
.
(
*
case1
*
)
...
...
@@ -153,7 +155,7 @@ admit.
(
*
case2
*
)
unfold
kronecker
at
2.
case
(
eq_nat_dec
n
j
);
try
lia
.
intros
H2
;
replace
(
sum_pn
_
_
)
with
(
@
zero
R_Ring
).
intros
H2
;
replace
(
sum_pn
_
_
)
with
(
@
zero
R_Ring
).
*
)
(
*
erewrite
Rmult_0_r
.
rewrite
plus_zero_l
;
easy
.
...
...
@@ -169,13 +171,14 @@ Lemma kronecker_bigop_scal_in_r : forall n (i : 'I_n) (a : 'E^n),
\
big
[
plus
/
zero
]
_
(
j
<
n
)
scal
(
kronecker
i
j
)
(
a
j
)
=
a
i
.
Proof
.
(
*
old
try
*
)
(
*
intros
i
n
a
H
.
replace
(
fun
j
:
nat
=>
mult
(
a
j
)
(
kronecker
i
j
))
with
(
fun
j
:
nat
=>
mult
(
a
j
)
(
kronecker
j
i
)).
apply
kronecker_sum_scal_in_l
;
easy
.
apply
functional_extensionality
.
intros
j
;
f_equal
;
apply
kronecker_sym
.
Q
ed
.
intros
j
;
f_equal
;
apply
kronecker_sym
.
*
)
Admitt
ed
.
Lemma
kronecker_bigop_scal_out_r
:
forall
i
n
(
a
:
'
E
^
n
),
...
...
@@ -183,26 +186,28 @@ Lemma kronecker_bigop_scal_out_r : forall i n (a : 'E^n),
\
big
[
plus
%
R
/
zero
]
_
(
j
<
n
)
scal
(
kronecker
i
j
)
(
a
j
)
=
zero
.
Proof
.
(
*
old
try
*
)
(
*
intros
i
n
a
H1
.
replace
(
fun
j
:
nat
=>
mult
(
a
j
)
(
kronecker
i
j
))
with
(
fun
j
:
nat
=>
mult
(
a
j
)
(
kronecker
j
i
)).
apply
kronecker_sum_scal_out_l
;
easy
.
apply
functional_extensionality
.
intros
j
;
f_equal
;
apply
kronecker_sym
.
Q
ed
.
intros
j
;
f_equal
;
apply
kronecker_sym
.
*
)
Admitt
ed
.
Lemma
kronecker_bigop_l
:
forall
n
(
j
:
'
I_n
),
(
*
(
j
<
n
)
%
nat
->
*
)
\
big
[
plus
%
R
/
zero
]
_
(
i
<
n
)
(
kronecker
i
j
)
=
1.
Proof
.
(
*
old
try
*
)
(
*
intros
j
n
H1
.
replace
(
sum_pn
(
fun
i
:
nat
=>
kronecker
i
j
)
n
)
with
(
sum_pn
(
fun
i
:
nat
=>
mult
(
one
)
(
kronecker
i
j
))
n
).
apply
kronecker_sum_scal_in_l
;
easy
.
f_equal
;
apply
functional_extensionality
.
intros
i
;
rewrite
mult_one_l
;
easy
.
*
)
Admitted
.
Lemma
kronecker_bigop_r
:
forall
n
(
i
:
'
I_n
),
...
...
@@ -217,13 +222,14 @@ apply functional_extensionality.
intros
j
;
apply
kronecker_sym
.
*
)
(
*
old
try
*
)
(
*
intros
i
n
H1
.
replace
(
fun
j
:
nat
=>
kronecker
i
j
)
with
(
fun
j
:
nat
=>
kronecker
j
i
).
apply
kronecker_sum_l
;
easy
.
apply
functional_extensionality
.
intros
j
;
apply
kronecker_sym
.
Qed
.
Qed
.
*
)
Admitted
.
Lemma
kronecker_bigop_prod
:
forall
n
(
i
j
:
'
I_n
),
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment