Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
Numerical Analysis in Coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Micaela Mayero
Numerical Analysis in Coq
Commits
c65cf8e3
Commit
c65cf8e3
authored
2 years ago
by
François Clément
Browse files
Options
Downloads
Patches
Plain Diff
Add generalized results ae_modus_ponens_gen and ae_imply_gen.
New version of ae_op_compat is now proved using the previous result.
parent
96c19419
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Lebesgue/measure.v
+64
-0
64 additions, 0 deletions
Lebesgue/measure.v
with
64 additions
and
0 deletions
Lebesgue/measure.v
+
64
−
0
View file @
c65cf8e3
...
...
@@ -894,6 +894,40 @@ apply negligible_ext with (A1 := fun _ => False); try intuition.
apply
negligible_emptyset
.
Qed
.
(
*
Lemma
884
p
.
183
(
v3
)
*
)
Lemma
ae_modus_ponens_gen
:
forall
(
P
Q
:
nat
->
(
nat
->
F
)
->
Prop
),
(
forall
f
,
ae
(
fun
x
=>
(
forall
j
,
P
j
(
fun
i
=>
f
i
x
))
->
(
forall
k
,
Q
k
(
fun
i
=>
f
i
x
))))
->
forall
f
,
(
forall
j
,
ae
(
fun
x
=>
P
j
(
fun
i
=>
f
i
x
)))
->
(
forall
k
,
ae
(
fun
x
=>
Q
k
(
fun
i
=>
f
i
x
))).
Proof
.
intros
P
Q
H
f
HP
k
.
pose
(
PP
:=
fun
f
=>
forall
j
,
P
j
f
).
pose
(
QQ
:=
fun
f
=>
forall
k
,
Q
k
f
).
pose
(
Ax
:=
fun
(
XX
:
(
nat
->
F
)
->
Prop
)
f
(
x
:
E
)
=>
XX
(
fun
i
=>
f
i
x
)).
pose
(
B
:=
fun
x
=>
(
Ax
PP
f
x
->
Ax
QQ
f
x
)
/
\
Ax
PP
f
x
).
apply
negligible_le
with
(
fun
x
=>
~
(
Ax
PP
f
x
->
Ax
QQ
f
x
)
\
/
~
Ax
PP
f
x
).
intros
x
HQ
;
apply
not_and_or
;
intuition
.
apply
negligible_union
;
unfold
Ax
,
PP
,
QQ
.
unfold
ae
in
H
;
try
easy
.
apply
negligible_ext
with
(
fun
x
=>
exists
j
,
~
P
j
(
fun
i
=>
f
i
x
)).
intros
;
split
;
[
apply
ex_not_not_all
|
apply
not_all_ex_not
].
apply
negligible_union_countable
;
easy
.
Qed
.
(
*
Lemma
885
p
.
183
(
v3
)
*
)
Lemma
ae_imply_gen
:
forall
(
P
Q
:
nat
->
(
nat
->
F
)
->
Prop
),
(
forall
(
f
:
nat
->
E
->
F
)
x
,
(
forall
j
,
P
j
(
fun
i
=>
f
i
x
))
->
(
forall
k
,
Q
k
(
fun
i
=>
f
i
x
)))
->
forall
f
,
(
forall
j
,
ae
(
fun
x
=>
P
j
(
fun
i
=>
f
i
x
)))
->
(
forall
k
,
ae
(
fun
x
=>
Q
k
(
fun
i
=>
f
i
x
))).
Proof
.
intros
P
Q
H
;
apply
ae_modus_ponens_gen
;
intros
f
.
apply
ae_everywhere
;
auto
.
Qed
.
(
*
Lemma
646
p
.
124
*
)
Lemma
ae_modus_ponens
:
forall
(
A1
A2
:
E
->
Prop
),
ae
(
fun
x
=>
A1
x
->
A2
x
)
->
ae
A1
->
ae
A2
.
...
...
@@ -1045,6 +1079,36 @@ Context {F : Type}.
Context
{
gen
:
(
E
->
Prop
)
->
Prop
}
.
Variable
mu
:
measure
gen
.
Lemma
ae_op_compat_new
:
forall
(
R1
R2
:
F
->
F
->
Prop
)
(
op
:
(
nat
->
F
)
->
F
),
(
forall
(
f
g
:
nat
->
E
->
F
)
x
,
(
forall
n
,
R1
(
f
n
x
)
(
g
n
x
))
->
R2
(
op
(
fun
i
=>
f
i
x
))
(
op
(
fun
i
=>
g
i
x
)))
->
(
forall
(
f
g
:
nat
->
E
->
F
),
(
forall
n
,
ae
mu
(
fun
x
=>
R1
(
f
n
x
)
(
g
n
x
)))
->
ae
mu
(
fun
x
=>
R2
(
op
(
fun
i
=>
f
i
x
))
(
op
(
fun
i
=>
g
i
x
)))).
Proof
.
intros
R1
R2
op
H
f
g
H1
.
pose
(
Q
:=
fun
k
fg
=>
match
k
with
|
0
%
nat
=>
R2
(
op
(
fun
i
=>
fst
(
fg
i
)))
(
op
(
fun
i
=>
snd
(
fg
i
)))
|
S
_
=>
True
end
).
apply
ae_ext
with
(
fun
x
=>
Q
0
%
nat
(
fun
i
=>
(
f
i
x
,
g
i
x
)));
try
easy
.
assert
(
HQ
:
forall
k
,
ae
mu
(
fun
x
=>
Q
k
(
fun
i
=>
(
f
i
x
,
g
i
x
))));
try
easy
.
pose
(
P
:=
fun
j
fg
=>
match
j
with
|
0
%
nat
=>
forall
i
:
nat
,
R1
(
fst
(
fg
i
))
(
snd
(
fg
i
))
|
S
_
=>
True
end
).
apply
ae_imply_gen
with
P
.
(
*
*
)
intros
fg
x
HP
k
;
destruct
k
;
try
easy
;
simpl
.
apply
H
with
(
f
:=
fun
i
x
=>
fst
(
fg
i
x
))
(
g
:=
fun
i
x
=>
snd
(
fg
i
x
)).
apply
(
HP
0
%
nat
).
(
*
*
)
intros
j
;
destruct
j
;
simpl
;
try
apply
ae_True
.
apply
ae_inter_countable
;
easy
.
Qed
.
(
*
Lemma
659
pp
.
126
-
127
(
with
I
=
nat
)
*
)
Lemma
ae_op_compat
:
forall
(
P
Q
:
F
->
F
->
Prop
)
(
op
:
(
nat
->
F
)
->
F
)
(
y0
:
F
),
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment