Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
Numerical Analysis in Coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Micaela Mayero
Numerical Analysis in Coq
Commits
d25a85b7
Commit
d25a85b7
authored
3 years ago
by
François Clément
Browse files
Options
Downloads
Patches
Plain Diff
Add some results + cleaning.
WIP: being lazy with proofs of measurable_Rbar_abs and measurable_Rbar_scal.
parent
e9c98dbd
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
Lebesgue/UniformSpace_compl.v
+7
-0
7 additions, 0 deletions
Lebesgue/UniformSpace_compl.v
Lebesgue/measurable_Rbar.v
+20
-30
20 additions, 30 deletions
Lebesgue/measurable_Rbar.v
with
27 additions
and
30 deletions
Lebesgue/UniformSpace_compl.v
+
7
−
0
View file @
d25a85b7
...
@@ -542,6 +542,13 @@ apply Rlt_le_trans with (k * f); try apply Rmult_lt_compat_l; try easy.
...
@@ -542,6 +542,13 @@ apply Rlt_le_trans with (k * f); try apply Rmult_lt_compat_l; try easy.
apply
Rabs_lt_between
'
;
easy
.
apply
Rabs_lt_between
'
;
easy
.
Qed
.
Qed
.
Lemma
open_Rbar_is_finite
:
open
is_finite
.
Proof
.
pose
(
full
:=
fun
_
:
R
=>
True
).
apply
open_ext
with
(
fun
y
=>
is_finite
y
/
\
full
y
);
try
(
unfold
full
;
tauto
).
apply
open_R_Rbar
,
open_true
.
Qed
.
Lemma
open_Rbar_R
:
forall
B
,
open
B
->
open
(
fun
x
=>
B
(
Finite
x
)).
Lemma
open_Rbar_R
:
forall
B
,
open
B
->
open
(
fun
x
=>
B
(
Finite
x
)).
Proof
.
Proof
.
intros
B
HB
x
Hx
.
intros
B
HB
x
Hx
.
...
...
This diff is collapsed.
Click to expand it.
Lebesgue/measurable_Rbar.v
+
20
−
30
View file @
d25a85b7
...
@@ -63,36 +63,6 @@ Proof.
...
@@ -63,36 +63,6 @@ Proof.
intros
;
apply
measurable_Borel_closed
,
closed_Rbar_eq
.
intros
;
apply
measurable_Borel_closed
,
closed_Rbar_eq
.
Qed
.
Qed
.
(
*
Lemma
measurable_Rbar_Borel_ge
:
forall
b
,
measurable_Rbar_Borel
(
Rbar_ge
b
).
Proof
.
intros
;
apply
measurable_Borel_closed
,
closed_Rbar_ge
.
Qed
.
Lemma
measurable_Rbar_Borel_gt
:
forall
b
,
measurable_Rbar_Borel
(
Rbar_gt
b
).
Proof
.
intros
;
apply
measurable_Borel_open
,
open_Rbar_gt
.
Qed
.
Lemma
measurable_Rbar_Borel_le
:
forall
a
,
measurable_Rbar_Borel
(
Rbar_le
a
).
Proof
.
intros
;
apply
measurable_Borel_closed
,
closed_Rbar_le
.
Qed
.
Lemma
measurable_Rbar_Borel_lt
:
forall
a
,
measurable_Rbar_Borel
(
Rbar_lt
a
).
Proof
.
intros
;
apply
measurable_Borel_open
,
open_Rbar_lt
.
Qed
.
Lemma
measurable_Rbar_Borel_oo
:
forall
a
b
,
measurable_Rbar_Borel
(
Rbar_oo
a
b
).
Proof
.
intros
;
apply
measurable_inter
.
apply
measurable_Rbar_Borel_lt
.
apply
measurable_Rbar_Borel_gt
.
Qed
.
*
)
Lemma
measurable_Rbar_Borel_up_id
:
Lemma
measurable_Rbar_Borel_up_id
:
forall
A
,
measurable_R
A
->
measurable_Rbar_Borel
(
up_id
A
).
forall
A
,
measurable_R
A
->
measurable_Rbar_Borel
(
up_id
A
).
Proof
.
Proof
.
...
@@ -557,6 +527,26 @@ Proof.
...
@@ -557,6 +527,26 @@ Proof.
intros
;
apply
measurable_Rbar_open
,
open_Rbar_intoo
.
intros
;
apply
measurable_Rbar_open
,
open_Rbar_intoo
.
Qed
.
Qed
.
Lemma
measurable_Rbar_is_finite
:
measurable_Rbar
is_finite
.
Proof
.
apply
measurable_Rbar_open
,
open_Rbar_is_finite
.
Qed
.
Lemma
measurable_Rbar_eq_R
:
measurable_Rbar
=
measurable_Rbar_R
.
Proof
.
rewrite
measurable_Rbar_eq_Borel
,
measurable_Rbar_R_correct
;
easy
.
Qed
.
Lemma
measurable_Rbar_eq_R_alt
:
measurable_Rbar
=
measurable_Rbar_R_alt
.
Proof
.
rewrite
measurable_Rbar_eq_Borel
,
measurable_Rbar_R_alt_correct
;
easy
.
Qed
.
Lemma
measurable_Rbar_abs
:
forall
B
,
measurable_Rbar
B
->
measurable_Rbar
(
fun
y
=>
B
(
Rbar_abs
y
)).
Proof
.
Admitted
.
Lemma
measurable_Rbar_scal
:
Lemma
measurable_Rbar_scal
:
forall
B
l
,
measurable_Rbar
B
->
measurable_Rbar
(
fun
y
=>
B
(
Rbar_mult
l
y
)).
forall
B
l
,
measurable_Rbar
B
->
measurable_Rbar
(
fun
y
=>
B
(
Rbar_mult
l
y
)).
Proof
.
Proof
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment