Skip to content
Snippets Groups Projects
Commit d25a85b7 authored by François Clément's avatar François Clément
Browse files

Add some results + cleaning.

WIP: being lazy with proofs of measurable_Rbar_abs and measurable_Rbar_scal.
parent e9c98dbd
No related branches found
No related tags found
No related merge requests found
...@@ -542,6 +542,13 @@ apply Rlt_le_trans with (k * f); try apply Rmult_lt_compat_l; try easy. ...@@ -542,6 +542,13 @@ apply Rlt_le_trans with (k * f); try apply Rmult_lt_compat_l; try easy.
apply Rabs_lt_between'; easy. apply Rabs_lt_between'; easy.
Qed. Qed.
Lemma open_Rbar_is_finite : open is_finite.
Proof.
pose (full := fun _ : R => True).
apply open_ext with (fun y => is_finite y /\ full y); try (unfold full; tauto).
apply open_R_Rbar, open_true.
Qed.
Lemma open_Rbar_R : forall B, open B -> open (fun x => B (Finite x)). Lemma open_Rbar_R : forall B, open B -> open (fun x => B (Finite x)).
Proof. Proof.
intros B HB x Hx. intros B HB x Hx.
......
...@@ -63,36 +63,6 @@ Proof. ...@@ -63,36 +63,6 @@ Proof.
intros; apply measurable_Borel_closed, closed_Rbar_eq. intros; apply measurable_Borel_closed, closed_Rbar_eq.
Qed. Qed.
(*
Lemma measurable_Rbar_Borel_ge : forall b, measurable_Rbar_Borel (Rbar_ge b).
Proof.
intros; apply measurable_Borel_closed, closed_Rbar_ge.
Qed.
Lemma measurable_Rbar_Borel_gt : forall b, measurable_Rbar_Borel (Rbar_gt b).
Proof.
intros; apply measurable_Borel_open, open_Rbar_gt.
Qed.
Lemma measurable_Rbar_Borel_le : forall a, measurable_Rbar_Borel (Rbar_le a).
Proof.
intros; apply measurable_Borel_closed, closed_Rbar_le.
Qed.
Lemma measurable_Rbar_Borel_lt : forall a, measurable_Rbar_Borel (Rbar_lt a).
Proof.
intros; apply measurable_Borel_open, open_Rbar_lt.
Qed.
Lemma measurable_Rbar_Borel_oo :
forall a b, measurable_Rbar_Borel (Rbar_oo a b).
Proof.
intros; apply measurable_inter.
apply measurable_Rbar_Borel_lt.
apply measurable_Rbar_Borel_gt.
Qed.
*)
Lemma measurable_Rbar_Borel_up_id : Lemma measurable_Rbar_Borel_up_id :
forall A, measurable_R A -> measurable_Rbar_Borel (up_id A). forall A, measurable_R A -> measurable_Rbar_Borel (up_id A).
Proof. Proof.
...@@ -557,6 +527,26 @@ Proof. ...@@ -557,6 +527,26 @@ Proof.
intros; apply measurable_Rbar_open, open_Rbar_intoo. intros; apply measurable_Rbar_open, open_Rbar_intoo.
Qed. Qed.
Lemma measurable_Rbar_is_finite : measurable_Rbar is_finite.
Proof.
apply measurable_Rbar_open, open_Rbar_is_finite.
Qed.
Lemma measurable_Rbar_eq_R : measurable_Rbar = measurable_Rbar_R.
Proof.
rewrite measurable_Rbar_eq_Borel, measurable_Rbar_R_correct; easy.
Qed.
Lemma measurable_Rbar_eq_R_alt : measurable_Rbar = measurable_Rbar_R_alt.
Proof.
rewrite measurable_Rbar_eq_Borel, measurable_Rbar_R_alt_correct; easy.
Qed.
Lemma measurable_Rbar_abs :
forall B, measurable_Rbar B -> measurable_Rbar (fun y => B (Rbar_abs y)).
Proof.
Admitted.
Lemma measurable_Rbar_scal : Lemma measurable_Rbar_scal :
forall B l, measurable_Rbar B -> measurable_Rbar (fun y => B (Rbar_mult l y)). forall B l, measurable_Rbar B -> measurable_Rbar (fun y => B (Rbar_mult l y)).
Proof. Proof.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment